IMPACT OF SCIENCE AND ENGINEERING GRADUATES ON KEY ECONOMIC INDICATORS

NATHANIEL V. ROBINSON

Department of Economics and Finance

APPROVED:

Nathan Ashby, Ph.D., Chair

Louis Everett, Ph.D.

James Holcomb, Ph.D.

Roberto Coronado, Ph.D.

Benjamin C. Flores, Ph.D. Acting Dean of the Graduate School

Copyright ©

by

Nathaniel V. Robinson

2011

IMPACT OF SCIENCE AND ENGINEERING GRADUATES ON KEY ECONOMIC INDICATORS

by

NATHANIEL V. ROBINSON, BSEE, P.E.

THESIS

Presented to the Faculty of the Graduate School of The University of Texas at El Paso in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

Department of Economics and Finance THE UNIVERSITY OF TEXAS AT EL PASO DECEMBER 2011

UMI Number: 1503802

All rights reserved

INFORMATION TO ALL USERS The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

UMI 1503802

Copyright 2012 by ProQuest LLC.

All rights reserved. This edition of the work is protected against unauthorized copying under Title 17, United States Code.

ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 - 1346

Table of Contents

Table of Contents	iv
List of Tables	vi
List of Figures	vii
1. Introduction	1
2. Contributing Works	4
3. Model Derivation, Interpretation and Data	7
3.1 Education Data and Trends	7
4. Model Construct	12
4.1 USA-Only Modeling	14
4.1.1 USA-Only Results Via Type 1 Modeling	17
4.1.2 USA-Only Results via Type 2 Modeling	19
4.1.3 USA-Only Summary	21
4.2 Multi-Country Panel Analysis	21
4.2.1 Panel Multi-Country Results via Type 1 Modeling	23
4.2.2 Panel Multi-Country Results via Type 2 Modeling	25
4.2.3 Panel All-Country Results	27

4.3 Summary of Panel Results	30
4.4 Alternative Analyses of the Study	30
5. Conclusion	33
Bibliography	35
Appendix A: summary Results for model 1 variants across range of lag	37
Statistically Detailed Outputs of Model 1 at 4 year lag – USA only regression	46
Appendix B: Regression Results for model 2 variants at 4 years of lag	48
Appendix C: Panel Data Results for Models 1 and 2 variants across range of Lags	50
Appendix D: Panel Data Results with Greater Statistical Detail	58
Model Results With Data Set 2 – All Countries	62
Curriculum Vitae	64

List of Tables

Table 1: List of variables (dependent, DV, or independent, IV) that are integrated into different variables (dependent, DV, or independent, IV) that are integrated into different variables (dependent, DV, or independent, IV) that are integrated into different variables (dependent, DV, or independent, IV) that are integrated into different variables (dependent, DV, or independent, IV) that are integrated into different variables (dependent, DV, or independent, IV) that are integrated into different variables (dependent, DV, or independent, IV) that are integrated into different variables (dependent, DV, or independent, IV) that are integrated into different variables (dependent, DV, or independent, IV) that are integrated into different variables (dependent, DV, or independent, IV) that are integrated into different variables (dependent, DV, or independent, IV) that are integrated into different variables (dependent, DV, or independent, IV) that are integrated into different variables (dependent, DV, or independent, IV) that are integrated into different variables (dependent, DV, or independent, IV) that are integrated into different variables (dependent, DV, or independent, IV) that are integrated into different variables (dependent, DV, or independent, IV) that are integrated into different variables (dependent) the dependent variables (de	iants
of the models for analysis	13
Table 2: Coefficients and resulting statistics per Model 1 Variants of S&E on GDP or GDP Growth	ı17
Table 3: model results for 1.iv across range of lags	18
Table 4: Statistical details of the output of Model 1.i at a 4 year lag of S&E graduates on GDP	18
Table 5: Coefficients and statistics for S&E impact on GDP or GDP growth with a 4 year lag	19
Table 6: Summary of Results for Model 2.iii across Range of Lag	20
Table 7: Statistical details of Model 2.i at a 4 year lag for S&E on GDP growth	20
Table 8: Results of Panel Model 1.iii across the range of lags	24
Table 9: S&E Coefficient values and statistics for Panel Model 1 results	24
Table 10: S&E Model equations for Panel Model 1 results	24
Table 10: Results of Panel Model 2.ii for Data Set 1 across the range of lags	25
Table 11: S&E Coefficients and statistics for Panel Model 2 Variants for Data Set 1	26
Table 13: S&E Coefficients with statistics for model variants using Data Set 2 (all countries)	29
Table 14: S&E coefficients with statistics for type 2 panel models using data set 2 (all countries)	29
Table 15: cross discipline panel output for oecd data set at 3 year lag	31
Table 16: results of the china-only model for range of lagged years 0 to 8	32

List of Figures

Figure 1: Plot of Graduates across Disciplines and Countries	8
Figure 2: Engineering Graduates per Country	9
Figure 3: Science Graduates across Countries	9
Figure 4: China and USA Graduates Adjusted Per 10,000 Persons	10
Figure 5: China and USA Graduates per 10,000 Persons (US all grads removed for scaling)	10
Figure 6: Taiwan, China and the USA Graduates per 10,000 Persons	11
Figure 7: Graph of Elasticity between GDP and S&E Graduates (lagged in years) – Type 1	17
Figure 8: Graph of Elasticity between GDP and S&E Graduates (lagged in years) – Type 2 Model	19
Figure 9: S&E graduates to GDP versus years of lag from graduation for Model 1 and Data Set 1	23
Figure 10: S&E graduate impact on GDP against years of lag since graduation for Models 1 and 2, Da	ta
Set 1	25
Figure 11: Plot of S&E impact on GDP per year of lag for all data sets	28
Figure 12: Plot of Panel with All Countries (Data set 2) against the points from Data Set 1	28

"Second only to a weapon of mass destruction detonating in an American city, we can think of nothing more dangerous than a failure to manage properly science, technology and education for the common good. . . " – United States Commission on National Security for the 21st Century, 2001

1. Introduction

A bipartisan group of Senators and Members of Congress asked the National Academies to identify steps necessary for the United States to "successfully compete, prosper, and be secure in the global community of the 21st century." Among the many results of the study, the committee indicates that firms that perceive a domestic shortage of scientists and engineers (S&E) simply move work outside of the USA. They also state that here is an apparent comparative underrepresentation of US citizens in S&E (16% of undergraduates in the US contrasted against 47% in China, 38% in South Korea and 27% in France), and further that math, science and engineering is the educational area in which America is "failing most convincingly" (Gathering Storm Committe of the National Academy of Sciences, 2010).

Multiple works show the benefits of technological progress, engineering development and similar scientific evolution, including how it extends to many groups in society beyond just the end user and scientist or engineer behind the effort¹. Of the American workforce, scientists and engineers make up a slim four percent of the total though disproportionately produce jobs for the remaining 96 percent (National Science Board, 2010). The contribution of technology and knowledge in the economy has been examined from Solow, 1957, to Barro and Sala-i-Martin, 2004. Similarly, the role of engineers contributing to localized processes of entrepreneurship (Saxenian, 2006), economic growth (Barro & Sala-i-Martin, 2004) and support of ancillary industries have been analyzed. When it comes to education, Barro and Sala-i-Martin found overall quality of education is more important than the years of schooling with regard to greater economic outcomes. Through both private and public benefits, education has been shown to be a

¹ See Bivens, J. (2003). "Updated Employment Multipliers for the U.S. Economy", Economic Policy Institute; Wolff, E. (2000) "Human capital investment and economic growth: exploring the cross-country evidence", Structural Change and Economic Dynamics; Barro, R., Sala-i-Martin, X. (2003) *Economic Growth*. MIT Press, 2nd Ed. as examples.

stimulant of economic growth that ultimately trickles into per capita income (Baldwin & Borrelli, 2008). While economic studies exist on enrollment rates and years of education relative to economic outcomes, this study seeks to show two variants on that theme; the first variant is discipline specific analysis on scientists and engineers (S&E). The second variant is to use graduation rates rather than enrollment and to evaluate the lagged impact from date of graduation to economic impact as it may be years later.

If those inferences show positive impacts of S&E and are coupled with the current state of education and the number of S&E graduates in the United States, e.g. considering in the period of writing the National Academies Gathering Storm Report, the US fell from first to 16th in tertiary graduation rate (Organization for Economic Cooperation and Development, 2009), then a large concern seems warranted. For multiple years, Manpower Inc.'s Talent Shortage Survey found that U.S. employers stated engineering positions as being the most difficult jobs to fill, even in light of 9% unemployment rates in the nation at the time of surveying. This seems to confirm inferences on either quality of educational systems feeding students into S&E and universities, or the number of S&E graduates from Universities, or both (Weiss, 2009).

It is worth mentioning that the concern over S&E is not a recent development. Current alarmists tend to focus on China and India, which is due to both their growth in S&E output and economic output. Previously, there has been similar concern over the Soviets in decades past. In 1958, the US Congress passed legislation to promote math and science education that was due in part to concerns with international competitiveness and Time magazine notes that advocates "have been pushing for more ever since" (Rotherham, 2011). There are then groups that attribute a portion of the trend in offshoring to the shortage of S&E. However, not all parties have bought into the shortage issue as it pertains to higher education in the US. A study at Duke University concludes that the numbers of S&E graduates reported by China and India are inflated or incomparable to those of the US and that the offshoring trend is due more to sheer cost savings than shortage of skilled labor (Wadhwa, Gereffi, Rissing, & Ong, 2005). Other studies find that the US produces an adequate supply of engineers but that these graduates take finance and

consulting jobs in lieu of entering the more traditional research and development (R&D) or engineering workforce (Lowel, Salzman, Bernstein, & Henderson, 2009). It is not the intent of this work to put that debate to rest but rather to quantify the relation between S&E graduates and various economic and technological outcomes. The outcome may be used in combination with market analysis to generate more effective education policies and strategic positioning of the nation. Aside from being economically interesting, it may help to provide a gauge on the severity of the debate and the extent of the impact of S&E graduation rate in economic terms.

2. Contributing Works

As mentioned, the National Academies, the New York Times and a litany of media outlets have publicized the growing gap between the number of engineering graduates in the United States versus rising competitors like China and India². Nearly a third of all U.S. manufacturing companies report suffering from skills shortages and 40% report foreseeing that problem worsen (Deloitte, Oracle, and the Manufacturing Institute, 2009). Of the various employed areas of these responding corporations (HR, IT, sales, marketing, unskilled laborers, etc), the largest shortage of needed employees that was reported were engineers and scientists (36% reporting a shortage). There has been an equal, if not larger, amount of speculation on the extent of the problem and the nature of impact within our changing nation in the face of this shortage. It should also be mentioned that there is some dissent on the magnitude of the shortage and in the ability of public education in the US to train and development the workforce (see Lowell & Salzman, 2007) though economic studies have shown that the globalization of the scientific and engineering workforce is threatening the US economy (Freedman, 2007) and many factors are at work creating a decline in engineers despite relatively high pay and low unemployment (Sturtevant, 2008).

Outside of this debate, there are those that have sought to quantify the relation between economic growth and education, technology and the workforce, including S&E. The conventional method for such macroeconomic impact estimates center on regression analysis to determine the rate of growth per capita (be it income or output) contrasted against an initial level of education (typically total or average years of schooling). Common controls within such works are initial levels of income and influences on steady-state income levels, e.g. openness to trade, quality of the institution or education, and geographic factors (Bloom, Canning, & Chan, 2006). The nature of the engineering job market has been analyzed (Ryoo & Rosen, 2004), the impact of tighter visa measures and international participation in engineering and science (Wang, 2004),

² Revisited: Rising Above the Gathering Storm (2010), NAP, Shortage Of Engineers Plagues Oil Industry (2008), New York Times, US Faces Science Shortage (2004), The Scientist, 5(1), as examples

as well as the contribution of technology and knowledge in the economy (Solow, 1957). The latter is similar to the work here but that work is based on a production function with labor markets and the S&E workforce at the time rather than a tie to S&E graduate rates at the time or in years past. Similarly, Barro and Sala-i-Martin (2004) provide a progression of models that examine the impact of technological shifts on economic growth, as well as the impact of changes in education. The later includes a breakup of male to female education, as well as primary, secondary and tertiary education. Through a cross-sectional study, the level of male educational status, particularly secondary and tertiary education, has a significant and positive growth effect, while female schooling was insignificant. They also reveal a statistically significant interactive relation between initial GDP and human capital in the broad sense of health and education. They do not differentiate between S&E graduates in tertiary education to those of other fields but do find, via a proxy of comparable international education outcomes, that the quality of education is largely more important in terms of partial relation to growth than the bulk years of schooling for the countries under their examination (Barro & Sala-i-Martin, 2004, p. 537).

Pancavel (1991) also tackles the rate of education and its partial relation to economic growth. Aggregate measures of schooling (years) and productivity are used as the inputs to a Cobbs-Douglass derived model that estimates a rise in impact from tertiary education from 1.3% in the timeframe 1913 to 1950 to 14.6% in the timeframe of 1973 to 1984 (Pencavel, 1993, p. 10). Bassanini ve Scarpetta (2001) also used a panel data set with average number of years of education as a proxy in the human capital element. Within these causal relations, co-integration and Granger-causality tests were used in the link between higher education and economic development to identify direction of causality. The work of De Meulemeester and Rochat (1995) show a significant causality between the number of higher education students per capita as they relate to economic development, which was then inferred as a significant causality between higher education and growth (De Meulemeester & Rochat, 1995). These analyses are categorically different than the work herein as they do not distinguish amongst the fields or disciplines of the graduates.

When it comes to differentiation amongst fields, Wolff (2000) does seek to differentiate S&E from other fields by performing an analysis with the number of scientists and engineers engaged in R&D (per 10,000 of the population) to gross national product (GNP) with the inclusion of education as a variable in the human capital element. Among his many results, he shows that a 1% increase in the number of S&E in the R&D workforce relate to a 6.4% increase in growth (1% significance level), though finds that the education variable (university enrollment) has a negative (statistically insignificant) coefficient (Wolff, 2000). However, this work doesn't contrast the S&E graduates against growth or similar output measures. As has been done in other works, here Wolff breaks education into primary, secondary and tertiary enrollments. The work of Lin (2003) does breakdown educational impacts per discipline and further contrasts those disciplines and rates with economic growth. In this case, the work is focused solely on Taiwan over the period of 1965 to 2000, where results did reveal that higher education overall provided a positive and significant effect. This is similar to what has been found in previous models, though in this case specific to Taiwan's economic development. Lin also states that "engineering and the natural sciences majors played the most prominent role" in the economic growth as derived from his estimated relations (Lin, 2004).

3. Model Derivation, Interpretation and Data

3.1 Education Data and Trends

Before proceeding through the model results and data, it is of interest to look at the education statuses of the US and other countries. The figure presented below (Fig. 1) is in bulk numbers and reflects the large increase in the number of Chinese graduates in overall numbers, as well as a similar trend in the Chinese engineering and S&E graduates. The greatest contrast between the US and China can be seen in the rise in slope. It can also be seen that the overall slope pattern for China tends to be mimicked by that of its engineering and S&E graduates. The overall growth of graduates in the US was relatively consistent across the years though engineering was flat. The upward trend in S&E for the US is then largely due to science graduates. The data is drawn from a number of sources³ and largely compiled by NSF and OECD.

To better visualize the greatest contrast between graduate trends, the engineering graduates are isolated and plotted in figure 2. What is notable is that the Chinese engineering trend dwarfs that of every country. For science, the slope is greater but sheer numbers are not. Perhaps a more interesting look is per capita, as shown in figure 3 and 4. In this case, the graduates are adjusted per 10,000 persons per country. In this case, the general trend between numbers of all graduates is not greatly different, though the trend in engineering is markedly different. The per capita number of science graduates in the US remains dominant in comparison to China but not so for engineering. When it comes to per capita graduates of the countries used in the limited panel study, Taiwan dominates overall graduates and per capita science and

³ SOURCES: China—National Bureau of Statistics of China, *China Statistical Yearbook*, annual series (Beijing) (various years); Japan—Government of Japan, Ministry of Education, Culture, Sports, Science and Technology, Monbusho Survey of Education (annual series; various years); Taiwan—Ministry of Education, Educational Statistics of the Republic of China (annual series; various years); United Kingdom—Higher Education Statistics Agency, special tabulations (various years); United States—National Center for Education, Division of Science Resources Statistics, Integrated Science and Engineering Resources Data System (WebCASPAR), http://webcaspar.nsf.gov; and others—Organisation for Economic Co-operation and Development, OECD.Stat Extracts, http://stats.oecd.org/Index.aspx.

engineering graduates. The Taiwanese growth per capita is also dominant. From a study of the numbers, if debate and concern is warranted for the USA, it seems best placed on trends and stagnation in engineering in comparison to the Asian competition.

Figure 1: Plot of Graduates across Disciplines and Countries

Where each line is as follows:

Figure 2: Engineering Graduates per Country

Figure 3: Science Graduates across Countries

Figure 4: China and USA Graduates Adjusted Per 10,000 Persons

Figure 5: China and USA Graduates per 10,000 Persons (US all grads removed for scaling)

Figure 6: Taiwan, China and the USA Graduates per 10,000 Persons

Where each line is as follows:

4. Model Construct

The approach used in this study is (a) to incorporate a model that allows for the influences of physical, labor and human capital to be assessed on output, (b) to incrementally introduce an increasing number of variables within those categories and (c) to allow for per capita and total value analysis. A common model for such an economic aim is the Cobb-Douglas production model, $Y_t = AK_t^{\alpha}L_t^{\beta}$, which relates output, Y_t , to physical capital, K_t , and labor, L_t , per time period, t. In the case of this study, the labor influence is expanded to include human capital, H_t , i.e. $Y_t = AK_t^{\alpha}L_t^{\beta}H_t^{\gamma}$. The α , β , and γ parameters are then the respective elasticities between output, Y_t , will be GDP (whether per capita, constant 2000 USD or current international) or National Income (with the same variants as GDP). The thesis centers on the human capital aspect, and in this case specifically it is S&E graduates. The human capital function as it relates to education can be placed in the form shown below by taking the natural log of both sides of the equation above:

$$\ln(Y_t) = \ln\left(AK_t^{\alpha}L_t^{\beta}H_t^{\gamma}\right) = \ln(A) + \ln(K_t^{\alpha}) + \ln\left(L_t^{\beta}\right) + \ln(H_t^{\gamma})$$
$$\ln(Y_t) = C + \alpha * \ln(K_t) + \beta * \ln(L_t) + \gamma * \ln(H_t)$$

Equation 1: model basis for analysis

An error term is then included, ε_t , to render the base model:

$$ln(Y_t) = C + \alpha * ln(K_t) + \beta * ln(L_t) + \gamma * ln(H_t) + \varepsilon_t$$

For this case, the γ term is then the elasticity between the output measure (GDP or National Income) and S&E graduates, as can be seen by taking the partial derivative of Y_t with respect to H_t :

$$\frac{dY}{dH} = \gamma A K_t^{\alpha} L_t^{\beta} H_t^{\gamma - 1} = \frac{\gamma A K_t^{\alpha} L_t^{\beta} H_t^{\gamma}}{H} = \gamma \frac{Y}{H}$$
$$\gamma = \frac{dY}{dH} \frac{H}{Y} \approx \frac{\% \Delta Y_t}{\% \Delta H_t}$$

and therefore:

	Variable	Description	Source	Туре
	GDP	GDP per capita (constant 2000 US\$)	World Bank, 2011	DV, IV
	GDP	PPP Converted GDP Per Capita, G-K method, at current prices (in I\$)	Penn World Table Version 7.0	DV, IV
	NI	Adjusted net national income (constant 2000 US\$)	World Bank, 2011	DV, IV
-	INVRP	Investment Share of PPP Converted GDP Per Capita at current prices [cgdp], (%)	Penn World Table Version 7.0	IV
nancia	INVR	Investment Share of PPP Converted GDP Per Capita at current prices [cgdp], (in I\$)	Penn World Table Version 7.0	IV
Ë	РОР	Population	Penn World Table Version 7.0	IV
	САР	Gross capital formation (constant 2000 US\$)	World Bank, 2011	IV
	LABOR	Labor force, total	World Bank, 2011	IV
	UNEMP	Unemployment, total (% of total labor force)	World Bank, 2011	IV
	UNEM	Unemployment, total	World Bank, 2011	IV
	HUMNO	200: Humanities and Arts	OECD Statistics	IV
	ENGO1	All Engineering Classifications within OECD	OECD Statistics	IV
	ENGO2	520: Engineering and engineering trades (ISC 52)	OECD Statistics	IV
	S_EO	All Science & Engineering OECD	OECD Statistics	IV
	S_EU	S&E first university degrees	NSF	IV
Jal	All-BSN	First university degrees	NSF	IV
tior	ENGN	Engineering first degrees	NSF	IV
nca	SOCSN	Science first degrees	NSF	IV
Ed	OTHN	First degrees other than S&E	NSF	IV
	All-GRU	Total graduates in all programs. Tertiary. Total	UNESCO	IV
	S_EU	Graduates in S&E. Tertiary. Total	UNESCO	IV
	ENG	Graduates in engineering, manufacturing and construction. Tertiary. Total	World Bank, 2011	IV
	SCI	Graduates in science. Tertiary. Total	World Bank, 2011	IV
	BUS	Graduates in social sciences, business and law. Tertiary. Total	World Bank, 2011	IV

• Table 1: List of variables (dependent, DV, or independent, IV) that are integrated into different variants of the models for analysis

The elasticity relation is the basis of the models that are used in the following pages. The initial model is a log-log relation between GDP and S&E graduates, which accounts only for previous GDP level and S&E graduates while holding all else constant. From that base, numerous variants are integrated into the model of Eq.1 above to incorporate labor, capital and population influences. The variables that were weaved into consideration through the progression of the models are included in the table on the following page. The modeling was broken into two categories, type 1 and type 2. Generally, type 1 modeling had fewer independent variables and no growth parameters in those independent variables. Type 2 used more variables and included growth variables as independent variables. Models progressed from the most simple:

 $\ln(GDP_{i,t}) = C + \ln(GDP_{i,t-1}) + \ln(S \& E_{i,t-lag}) + a_i + \varepsilon_t$

to the more complex, e.g. $\ln(\frac{GDP_t}{GDP_{t-1}}) = C + \ln(GDP_{t-1}) + \ln(\frac{INVR_t}{INVR_{t-1}}) + \ln(\frac{UNEM_t}{UNEM_{t-1}}) + \ln(OTHGR_{t-log}) + \ln(S \& E_{t-log})...$ as variables are added into the model. Note that in the case of panel regression, fixed effects were run for each variant. That is to say, the fixed effect estimator is used to compensate for cross section or time independent influences that are potentially correlated with the independent variables. Similarly, all models used White heteroskedastic correction to compensate for any potential differences in variability among the different parameters used. As will be seen, the averaged S&E impact (elasticity) across all countries for type 1 models is 0.04 and type 2 is 0.06, respectively. That is to say, a 1% change in S&E results in a 0.06% change in GDP. Meanwhile, for the USA-only modeling the elasticities were 0.116 and 0.264, respective to type 1 and type 2 models, when averaged across years of lag.

4.1 USA-Only Modeling

The USA was analyzed on its own to begin the study. In this case, regressions progressed through a series of models in order to determine (i) whether a statistically significant economic impact by engineering and science (S&E) graduates exists on GDP and Income, (ii) determine the number of years between maximum impact and graduation (which can be inferred as S&E maturation, time lag in product/service development, etc) and (iii) how the impact, if any,

contrasts with international results that are to found later. For each model, a lag from the year of economic impact (*t*) versus the time of graduation (t - x) is run from 0 to 8 years (*x*), such that the economic impact of S&E graduates 5 years ago would be S&E taken at t - 5.

The model variants for Type 1 construct that were used include the following:

T1.i. Base model: $\ln(GDP_t) = C + \ln(GDP_{t-1}) + \ln(S \& E_{t-lag}) + \varepsilon_t$

(b) base with time trend, i.e. $\ln(GDP_t) = C + \ln(GDP_{t-1}) + \ln(S \& E_{t-lag}) + \tau + \varepsilon_t$

T1.ii. Mean GDP Growth: $\ln(\frac{GDP_t}{GDP_{t-1}}) = C + \ln(GDP_{t-1}) + \ln(S \& E_{t-lag}) + \varepsilon_t$

(b) with time trend added to model above.

T1.iii. Mean GDP Growth with Investment: $\ln(\frac{GDP_t}{GDP_{t-1}}) = C + \ln(GDP_{t-1}) + \ln(S \& E_{t-lag}) + \ln(INVR_t) + \varepsilon_t$

(b) with time trend added to model above.

T1.iv. Base model (not growth) with investment: $\ln(GDP_t) = \ln(GDP_{t-1}) + \ln(INVR_t) + \ln(S \& E_{t-lag}) + \varepsilon_t$ and (b) with time trend added to model above.

The variants for Type 2 Model are then:

T2.i. Capital and Labor with S&E and All Graduates:

$$\ln(\frac{GDP_{t}}{GDP_{t-1}}) = C + \ln(\frac{CAP_{t}}{CAP_{t-1}}) + \ln(\frac{UNEM_{t}}{UNEM_{t-1}}) + \ln(GRAD_{t-lag}) + \ln(S \& E_{t-lag}) + \varepsilon_{t}$$

(b) add-in past GDP for convergence

$$\ln(\frac{GDP_{t}}{GDP_{t-1}}) = C + \ln(GDP_{t-1}) + \ln(\frac{CAP_{t}}{CAP_{t-1}}) + \ln(\frac{UNEM_{t}}{UNEM_{t-1}}) + \ln(GRAD_{t-lag}) + \ln(S \& E_{t-lag}) + \varepsilon_{t}$$

(c) add-in time trend with previous GDP model.

T2.ii. Capital and Labor with S&E and non-S&E Graduates, (b) and time trend.

$$\ln(\frac{GDP_{t}}{GDP_{t-1}}) = C + \ln(GDP_{t-1}) + \ln(\frac{CAP_{t}}{CAP_{t-1}}) + \ln(\frac{UNEM_{t}}{UNEM_{t-1}}) + \ln(OTHGR_{t-lag}) + \ln(S \& E_{t-lag}) + \tau + \varepsilon_{t}$$

T2.iii. Exchange capital formation for Investment as Share of GDP, (b) and time trend.

$$\ln(\frac{GDP_{t}}{GDP_{t-1}}) = C + \ln(GDP_{t-1}) + \ln(\frac{INVR_{t}}{INVR_{t-1}}) + \ln(\frac{UNEM_{t}}{UNEM_{t-1}}) + \ln(OTHGR_{t-lag}) + \ln(S \& E_{t-lag}) + \tau + \varepsilon_{t}$$

T2.iv. Run the above with GDP in International Current Dollar and 2000 Constant USD

Most model results of the Type 1 construct show a maximum impact occurring around four years from graduation to impact (on GDP or national income). As such, the regression output results for various Type 1 models at year 4 are provided in detail below. Summary tables are provided in the appendix across the range of lags and for various model variants. Greater statistical detail is also provided in the appendix for reference. Similarly within the Type 2 construct, tables are also provided that show the results per year of lag for every other model. The Type 2 Model is a Cobbs-Douglass based derivation, as previously given above, which is then varied to include an increasing number of independent variables. National Income and GDP served as the dependent variables though the trend in impact was largely the same and therefore the GDP variants of the models tend to be presented.

Note that for Model 1 and 2 the change in S&E graduates and the mean rate of growth change of S&E was run within each model variant above. In nearly each case, the mean rate of change rendered insignificant results with coefficients that went against theory in the sign of their values, e.g. an increase in unemployment resulting in an increase in GDP and vice versa for education. With regard to data, variations in reported education statistics exist depending on the source and the definitions by which the source defined graduates and disciplines. In the case of the USA only study, the NSF provided a larger body of data for the US⁴ and as such that data was used in the analysis. Data sources for the panel analysis were provided earlier.

⁴ Tabulated by National Science Foundation/Division of Science Resources Statistics (NSF/SRS); data from Department of Education/National Center for Education Statistics: Integrated Postsecondary Education Data System Completions Survey and NSF/SRS: Survey of Earned Doctorates, taken from NSF online database Aug 2011.

4.1.1 USA-Only Results Via Type 1 Modeling

Figure 7: Graph of Elasticity between GDP and S&E Graduates (lagged in years) - Type 1

A discernible trend exists in the variants of the model that indicate a maximum impact occurs around 4 years after a scientist or engineer graduates. Note that the various points along each plot are marked and color coded according to statistical significance. The following table presents the coefficient values and standard errors for a 4 year lag. The F-statistic for all coefficients per variable is also given along with number of observations in the model. Similar results for Model 2, which follows the model 1 section, are also presented.

Model	S&E Coef	SE(S&E)	Model F-stat	Obs
1.i	0.137	0.026	39291.050	37
1.i(b)	0.137	0.027	25434.540	37
1.ii	0.137	0.026	25434.540	37
1.ii(b)	0.137	0.027	17.390	37
1.iii	0.091	0.027	35.815	37
1.iii(b)	0.083	0.026	30.597	37
1.iv	0.091	0.027	41949.600	37
1.iv(b)	0.083	0.026	34586.860	37

Table 2: Coefficients and resulting statistics per Model 1 Variants of S&E on GDP or GDP Growth

Average 0.112 with standard dev. of 0.03

The following tables summarize the results for model *iv*, showing all coefficients and a color coded system indicating statistical significance, if any. As mentioned, the results for every other model variant are provided in the appendix in similar format to the table below.

S&E Lag	GDP	Constant	GDP-1	INVR	S&E
0 Growth		1.02255***	-0.191454***	0.158018***	0.020844
1	Growth	0.736102**	-0.184787***	0.145091***	0.056068*
2	Growth	0.764954***	-0.180763***	0.138688***	0.058582***
3	Growth	0.559663**	-0.174057***	0.126732***	0.085385***
4	Growth	0.582966**	-0.180573***	0.130035***	0.091473***
5	Growth	0.831817***	-0.189153***	0.138223***	0.073946***
6	Growth	0.943762***	-0.201208***	0.147456***	0.072871***
7	Growth	1.062721***	-0.207396***	0.15198***	0.068001***
8	Growth	1.247708***	-0.212458***	0.158125***	0.051761

Table 3: model results for 1.iv across range of lags $\ln(\frac{GDP_t}{GDP_{t-1}}) = C + \ln(GDP_{t-1}) + \ln(S \& E_{t-lag}) + \ln(INVR_t) + \varepsilon_t$

where *, **, and *** are significant at 10%, 5%, and 1%, respectively.

Table 4: Statistical details of the output of Model 1.i at a 4 year lag of S&E graduates on GDP

1.i $\log(GDP_i) = C + \log(GDP_{i-1}) + \log(S \& E_{i-\log}) + \varepsilon_i$							
Dependent Variable: LOG(TSC_GDP)							
Method: Least Squares	5			Sample (adj	usted): 1970 2006		
Included observations: 37 after adjustments							
White heteroskedastic	city-consistent	t standard error	s & covari	iance			
Variable	Coefficient	Std. Error	t-Stat	Prob.			
с	-0.257912	0.192255	-1.342	0.1886			
LOG(TSC_GDP(-1))	0.95152	0.006506	146.25	0			
LOG(MT_NSF_BS(-4))	0.136962	0.02617	5.2336	0			
R-squared	0.999568	Mean depend	ent var	29.11615			
Adjusted R-squared	0.999542	S.D. depende	nt var	0.758481			
S.E. of regression	0.016231	Akaike info cr	iterion	-5.32621			
Sum squared resid	0.008957	Schwarz criter	ion	-5.19559			
Log likelihood	101.5348	Hannan-Quin	n criter.	-5.28016			
F-statistic	39291.05	Durbin-Watso	n stat	1.926442			
Prob(F-statistic)	0						
Breusch-Godfrey Seria	l Correlation L	M Test:					
F-statistic	0.586373	Prob. F(8,26)		0.7799			
Obs*R-squared	5.655293 P	rob. Chi-Square	≘(8)	0.6858			

4.1.2 USA-Only Results via Type 2 Modeling

Figure 8: Graph of Elasticity between GDP and S&E Graduates (lagged in years) - Type 2 Model

Model	S&E Coef	SE(S&E)	Model F-stat	Obs	
2.i	0.277	0.076	6.358	26	
2.i(b)	0.339	0.076	6.862	26	
2.i(c)	0.341	0.069	10.474	26	
2.ii	0.312	0.074	16.378	26	
2.ii(b)	0.171	0.060	10.472	26	
2.iii	0.232	0.041	28.210	26	
2.iii(b)	0.173	0.047	27.850	26	
Average	0.264	with standard dev. of 0.07			

Table 5: Coefficients and statistics for S&E impact on GDP or GDP growth with a 4 year lag

For the model below, results are presented in table 6, as follows. A sample of the Model 2 results is also provided in greater statistical detail. The results for each variant of Model 2 construct at a 4 year lag are provided in Appendix B. However, it should be noted that in the case of Model 2, the maximum return from S&E graduates to Economic Indicators such as GDP,

GDP Growth, National Income and National Income growth is at 5 years compared to the 4 found in the Type 1 modeling.

$$\ln(\frac{GDP_t}{GDP_{t-1}}) = C + \ln(GDP_{t-1}) + \ln(\frac{INVR_t}{INVR_{t-1}}) + \ln(\frac{UNEM_t}{UNEM_{t-1}}) + \ln(OTHGR_{t-lag}) + \ln(S \& E_{t-lag}) + \varepsilon_t$$

Table 6: Summary of Results for Model 2.iii across Range of Lag

S&E Lag	GDP	Constant	GDP-1	INVR	UNEM	OTH-GRAD	S&E
0	Growth	0.29816	-0.035304*	0.213187***	0.012196	-0.022844	0.085656
1	Growth	0.171315	-0.038032**	0.240023***	0.037688	-0.088522	0.171324**
2	Growth	-0.100426	-0.047974***	0.236365***	0.036498	-0.091967*	0.219269***
3	Growth	-0.350093	-0.05482***	0.232556***	0.018904	-0.067248	0.228613***
4	Growth	-0.567232*	-0.059792***	0.203092***	-0.012858	-0.043571	0.232364***
5	Growth	-0.869753**	-0.068038***	0.159542***	-0.044455	-0.005824	0.235587***
6	Growth	-0.800777**	-0.061717***	0.150895***	-0.049601*	0.012363	0.196504***
7	Growth	-0.694174*	-0.054229***	0.147741***	-0.045509*	0.048955	0.132232**
8	Growth	-0.420113	-0.043979***	0.179531***	-0.026904	0.05707	0.078325

Table 7: Statistical details of Model 2.i at a 4 year lag for S&E on GDP growth

2.i $\ln(\frac{GDP_i}{GDP_i}) = C + \ln(\frac{CAP_i}{CAP_i}) + \ln(\frac{UNEM_i}{UNEM_i}) + \ln(GRAD_{i-lag}) + \ln(S \& E_{i-lag}) + \varepsilon_i$							
Dependent Variable: LOG(TSC_GDP/TSC_GDP(-1))							
Method: Least Squares Sample (adjusted): 1981 2006							
Included observations: 26 after	er adjustme	nts					
White heteroskedasticity-con	sistent stan	dard errors 8	k covariance				
Variable	Coef.	Std. Error	t-Stat	Prob.			
с	1.158689	0.447066	2.591761	0.017			
LOG(KT_CAPR/KT_CAPR(-1))	0.168877	0.066435	2.541991	0.019			
LOG(UNEM/UNEM(-1))	-0.059648	0.029551	-2.018465	0.0565			
LOG(ET_NSF_BS(-4))	-0.333666	0.070752	-4.716011	0.0001			
LOG(MT_NSF_BS(-4))	0.276612	0.076307	3.625009	0.0016			
R-squared	0.547718	Mean depe	endent var	0.060463			
Adjusted R-squared	0.461569	S.D. depen	dent var	0.019866			
S.E. of regression	0.014577	Akaike info	criterion	-5.447706			
Sum squared resid	0.004462	Schwarz cr	iterion	-5.205765			
Log likelihood	75.82018	Hannan-Qu	uinn criter.	-5.378036			
F-statistic	6.357795	Durbin-Wa	tson stat	0.912437			
Prob(F-statistic)	0.001626						
Breusch-Godfrey Serial Corre	lation LM Te	st:					
F-statistic	0.485423	Prob. F(4,17)		0.7463			
Obs*R-squared	2.66523	b. Chi-Squar	e(4)	0.6153			

4.1.3 USA-Only Summary

The results of S&E impact on the Type 1 variants varied from 0.083 to 0.137. In most cases, an addition of time trending had no effect on S&E coefficient and solely or mostly on the effect of prior year's GDP or national income. The average of 0.112 indicates that a 1% change in S&E results in a 0.112% change in GDP. By contrast, Lin (2004) found a 1% change in S&E for Taiwan results in a 0.19% change in Taiwanese GDP using similar but not identical modeling. The variants of the Type 2 modeling, the Cobb-Douglas derivative with physical and human capital inclusion, resulted in an average elasticity over twice as great as the more simple GDP-to-S&E of Type 1, namely 0.264%. Wolff (2000) found values of 0.031 to 0.071, but using a log(GDP) to unit value S&E relative to 10,000. In this case, the S&E was scientists and engineers engaged in R&D and the reported value is not an elasticity as is the case herein. The relation Wolff found is not directly comparable to the result presented herein, nor is the statistically significant relation of male higher education in a similar log(GDP) to unit value reported to be 0.055 (Barro & Sala-i-Martin, 2004). However, like the Taiwanese study, the relative measures are within ballpark when considering the results found for the USA-only study of this work.

4.2 Multi-Country Panel Analysis

By expanding from the USA only regression analysis, countries and their respective data are added into variants of Type 1 and Type 2 panel models. In this case, the inferences sought are similar to previous, namely (i) statistically significant impact between engineers and scientists (S&E), and (ii) number of years between maximum impact and graduation (as can be inferred as S&E maturation, time lag in product/service development, etc). Like the USA modeling, each panel model is run with a lag from the time of graduation to the year for that period t from 0 to 8 years.

Model variants for Type 1 Model:

T1P.i Base model: $\ln(GDP_{i,t}) = C + \ln(GDP_{i,t-1}) + \ln(S \& E_{i,t-lag}) + a_i + \varepsilon_{i,t}$

(b) base with time trend, i.e. $\ln(GDP_{i,t}) = C + \ln(GDP_{i,t-1}) + \ln(S \& E_{i,t-lag}) + a_i + \tau + \varepsilon_{i,t}$ T1P.ii Investment addition to base: $\ln(GDP_{i,t}) = \ln(GDP_{i,t-1}) + \ln(INVR_{i,t}) + \ln(S \& E_{i,t-lag}) + a_i + \varepsilon_t$

(b) with time trend added to model *ii* above.

T1P.iii Mean GDP Growth with Investment: $\ln(\frac{GDP_{i,t}}{GDP_{i,t-1}}) = C + \ln(GDP_{i,t-1}) + \ln(S \& E_{i,t-lag}) + \ln(INVR_{i,t}) + a_i + \varepsilon_t$

(b) with time trend added to model *iii* above.

T1P.iv Population consideration into growth model:

$$\ln(\frac{GDP_{i,t}}{GDP_{i,t}}) = \ln(GDP_{i,t-1}) + \ln(INVR_{i,t}) + \ln(S \& E_{i,t-lag}) + \log(pop_{i,t}) + \tau + a_i + \varepsilon$$

(b) same model but on the value rather than growth of GDP.

T1P.v Engineering isolated against humanities: $\ln(\frac{GDP_{i,t}}{GDP_{i,t}}) = \ln(GDP_{i,t-1}) + \ln(ENG_{i,t-lag}) + \ln(HUMN_{i,t-lag}) + \tau + a_i + \varepsilon_t$

Two sets of data were run in the panel analysis. The first, consisting of 27 countries, was comprised predominantly of developed countries though did included China and a couple of developing countries at the time periods covered. The second set was done with 237 countries, though for many of those countries the contribution to observations was small due to limited data, in particular education data. Perhaps not unsurprisingly, the results are more diverse and do not hold statistical significance across the range of lagged years as did the USA-only regression. The following graph reflects the contrast in the model results for the 27 country data. The maximum return in this case from S&E graduates appears to be either year 3 or year 7, with more models returning a larger impact in year 7. Models largely returned statistically insignificant results for S&E graduates for years 4, 5 and 8. Model results for the type 2 model are then added to the figure and provide further evidence of maximum return at or near year 7. Note that the time trend variants of the models (notated as (b)) followed the general trend of the base model and thus are not shown for clarity in the graph. With the addition of model 2 type variants, as will be shown below, the S&E graduate impact seems to be near the 6.5 mark in years. The value of these elasticities is provided after the figure, as well as a sample of statistical outputs for various models. As with previous, the appendix holds statistical outputs per model variant.

Model 2 variants for Type 2 Model:

T2P.i Capital and Labor with S&E and All Graduates:

$$\ln(\frac{GDP_{i,t}}{GDP_{i,t-1}}) = C + \ln(\frac{CAP_{i,t}}{CAP_{i,t-1}}) + \ln(\frac{UNEM_{i,t}}{UNEM_{i,t-1}}) + \ln(GRAD_{i,t-lag}) + \ln(S \& E_{i,t-lag}) + a_i + \varepsilon_t$$

(b) add-in time trend,

(c) add-in past GDP for convergence

$$\ln(\frac{GDP_{i,t}}{GDP_{i,t-1}}) = C + \ln(GDP_{i,t-1}) + \ln(\frac{CAP_{i,t}}{CAP_{i,t-1}}) + \ln(\frac{UNEM_{i,t}}{UNEM_{i,t-1}}) + \ln(GRAD_{i,t-lag}) + \ln(S \& E_{i,t-lag}) + a_i + \varepsilon_t$$

(d) add-in time trend with previous GDP model.

T2P.ii Capital and Labor with S&E and non-S&E Graduates, (b) and time trend.

$$\ln(\frac{GDP_{i,t}}{GDP_{i,t-1}}) = C + \ln(GDP_{i,t-1}) + \ln(\frac{CAP_{i,t}}{CAP_{i,t-1}}) + \ln(\frac{UNEM_{i,t}}{UNEM_{i,t-1}}) + \ln(OTHGR_{i,t-lag}) + \ln(S \& E_{i,t-lag}) + a_i + \tau + \varepsilon_t$$

T2P.iii Exchange capital formation for Investment as Share of GDP, (b) and time trend.

$$\ln(\frac{GDP_{i,t}}{GDP_{i,t-1}}) = C + \ln(GDP_{i,t-1}) + \ln(\frac{INVR_{i,t}}{INVR_{i,t-1}}) + \ln(\frac{UNEM_{i,t}}{UNEM_{i,t-1}}) + \ln(OTHGR_{i,t-lag}) + \ln(S \& E_{i,t-lag}) + a_i + \tau + \varepsilon_t$$

4.2.1 Panel Multi-Country Results via Type 1 Modeling

The table below shows the trend across the range of lags for Panel Model 1.iii.

Table 8: Results of Panel Model 1.iii across the range of lags

	$\ln(\frac{GDP_{i,t}}{GDP_{i,t}}) = \ln(GDP_{i,t-1}) + \ln(INVR_{i,t}) + \ln(S \& E_{i,t-lag}) + \tau + a_i + \varepsilon_t$									
S&E Lag	GDP	Constant	GDP-1	S&E	Т	INVR				
0	Growth	-6.316883**	-0.344117***	0.035684***	0.003833***	0.206181***				
1	Growth	-7.057466**	-0.369742***	0.033162**	0.004332***	0.209347***				
2	Growth	-5.766001*	-0.369228***	0.029615*	0.003677**	0.215457***				
3	Growth	-6.770137*	-0.388836***	0.033349*	0.004272**	0.212538***				
4	Growth	-11.78556**	-0.42835***	0.010128	0.007051***	0.221523***				
5	Growth	-7.29373	-0.391908***	-0.005747	0.004784	0.204057***				
6	Growth	-6.893988	-0.455116***	0.037137**	0.004691	0.204298***				
7	Growth	-3.191524	-0.518578***	0.051792***	0.003193	0.183242***				
8	Growth	3.741245	-0.537174***	0.038293***	-0.0001	0.18466***				

Table 9: S&E Coefficient values and statistics for Panel Model 1 results

Model	S&E Coef	SE(S&E)	Model F-stat	Obs	Lag
P1.i	0.070	0.017	682.402	226	3
P1.i(b)	0.064	0.019	816.271	226	3
P1.ii	0.032	0.012	1188.910	120	7
P1.ii(b)	0.024	0.015	1230.750	120	7
P1.iii	0.052	0.018	19.739	87	7
P1.iv	0.022	0.012	16.193	120	7
Average	0.044	SD of Avg	0.021		

Table 10: S&E Model equations for Panel Model 1 results

Model	Equation Form
P1.i	$\ln(GDP_{i,t}) = C + \ln(GDP_{i,t-1}) + \ln(S \& E_{i,t-iag}) + a_i + \varepsilon_t$
P1.i(b)	$\ln(GDP_{i,t}) = C + \ln(GDP_{i,t-1}) + \ln(S \& E_{i,t-log}) + a_i + \tau + \varepsilon_t$
P1.ii	$\ln(GDP_{i,t}) = \ln(GDP_{i,t-1}) + \ln(INVR_{i,t}) + \ln(S \& E_{i,t-iag}) + a_i + \varepsilon_t$
P1.ii(b)	$\ln(GDP_{i,t}) = \ln(GDP_{i,t-1}) + \ln(INVR_{i,t}) + \ln(S \& E_{i,t-log}) + a_i + \tau + \varepsilon_t$
P1.iii	$\ln\left(\frac{GDP_{i_{i_{t}}}}{GDP_{t}}\right) = \ln(GDP_{i_{i_{t}-1}}) + \ln(INVR_{i_{t}}) + \ln(S \& E_{i_{i_{t}-lag}}) + \tau + a_{i_{t}} + \varepsilon_{i_{t}}$
P1.iv	$\ln(\frac{GDP_{i_{i_t}}}{GDP_{i_{i_t}}}) = \ln(GDP_{i_{i_t-1}}) + \ln(INVR_{i_{i_t}}) + \ln(S \& E_{i_{i_t-1}ag}) + \log(pop_{i_t}) + \tau + a_i + \varepsilon_i$

The following pages reflect similar tables to those above. However in this case the results were done by taking the same data set and running panel modeling with the type 2 constructs.

Results for the Type 2 modeling are summarized, followed by a summary of all multi-country modeling.

4.2.2 Panel Multi-Country Results via Type 2 Modeling

Figure 10: S&E graduate impact on GDP against years of lag since graduation for Models 1 and 2, Data Set 1

Each line represents a model variant. Other than the first model, which is the most simplistic contrasting model containing solely the prior year's GDP and S&E graduates at the various lags, all others indicate a later return on science and engineering graduates between year 6 and 7. As can be seen, the results are littered with statistically insignificant values throughout the years when the elasticity is approximately 0.02 or less.

S&E Lag	GDP	Constant	GDP-1	INVR	UNEM	Con't below
0	Growth	-3.337962	-0.044158***	0.189415***	-0.049615***	
1	Growth	-3.933416	-0.069143***	0.185828***	-0.052519***	
2	Growth	-0.681186	-0.060876*	0.190176***	-0.047721***	
3	Growth	-1.315992	-0.096871**	0.193495***	-0.045732***	
4	Growth	-11.10694***	-0.155925***	0.208412***	-0.04299***	
5	Growth	-6.420344	-0.14678***	0.189964***	-0.051672***	
6	Growth	-8.924082*	-0.210635***	0.19982***	-0.047572***	
7	Growth	-7.967657	-0.248642***	0.206149***	-0.036339*	
8	Growth	1.985834	-0.205558***	0.252911***	-0.010779	

Table 11: Results of Panel Model 2.ii for Data Set 1 across the range of lags

OTH-GRAD	S&E	τ
0.006751	0.010696	0.001815
0.01359	0.01629*	0.002172
0.027623	0.021214**	0.000404
0.057206***	0.021272	0.000736
0.048489***	0.012703	0.006009***
0.057581***	0.01113	0.003586
0.048479*	0.05697**	0.004982*
0.038161**	0.052758***	0.004783
0.099072***	0.000543	-0.000472

where *, **, and *** are significant at 10%, 5%, and 1%, respectively, for model:

$$\ln(\frac{GDP_{t}}{GDP_{t-1}}) = C + \ln(GDP_{t-1}) + \ln(\frac{INVR_{t}}{INVR_{t-1}}) + \ln(\frac{UNEM_{t}}{UNEM_{t-1}}) + \ln(OTHGR_{t-lag}) + \ln(S \& E_{t-lag}) + \tau + \varepsilon_{t}$$

Model	S&E Coef	SE(S&E)	Model F-stat	Obs	Lag
P2.i	0.072	0.024	11.840	105	6
P2.i(b)	0.068	0.024	11.620	105	6
P2.ii	0.062	0.030	23.500	110	7
P2.ii(b)	0.057	0.029	22.919	110	7
P3.iii	0.054	0.020	23.304	87	7
P3.iii(b)	0.053	0.020	22.273	87	7
Average	0.070	SD of Avg	0.003 ; for 6 year lag		
Average	0.056	SD of Avg	0.004 ; for 7 year lag		

The models per variant reported above are given in the following table on the next page in equation form.

Model	Equation Form	
P2.i	$\ln(\frac{GDP_{i,i}}{GDP_{i,i-1}}) = C + \ln(GDP_{i,i-1}) + $	$\ln(\frac{CAP_{i,t}}{CAP_{i,t-1}}) + \ln(\frac{UNEM_{i,t}}{UNEM_{i,t-1}}) + \ln(OTHGP_{i,t-lag}) + \ln(S \& E_{i,t-lag}) + \alpha_t + \varepsilon_t$
P2.i(b)	$\ln(\frac{GDP_{i,i}}{GDP_{i,i-1}}) = C + \ln(GDP_{i,i-1}) + $	$\ln(\frac{CAP_{i,t}}{CAP_{i,t-1}}) + \ln(\frac{UNEM_{i,t}}{UNEM_{i,t-1}}) + \ln(OTHGR_{i,t-lag}) + \ln(S \& E_{i,t-lag}) + a_t + \varepsilon + \varepsilon_t$
P2. <mark>ji</mark>	$\ln(\frac{GDP_{i,i}}{GDP_{i,i-1}}) = C + \ln(GDP_{i,i-1})$	$+\ln(\frac{INVR_{i,i}}{INVR_{i,i-1}}) + \ln(\frac{UNEM_i}{UNEM_{i-1}}) + \ln(OTHGR_{i,i-lag}) + \ln(S \& E_{i,i-lag}) + a_i + \varepsilon_i$
P2. <mark>i</mark> i(b)	$\ln(\frac{GDP_{i,i}}{GDP_{i,i-1}}) = C + \ln(GDP_{i,i-1})$	$+\ln(\frac{INVR_{i,t}}{INVR_{i,t-1}}) + \ln(\frac{UNEM_{i,t}}{UNEM_{i,t-1}}) + \ln(OIHGR_{i,t-lag}) + \ln(S \& E_{i,t-lag}) + a_i + r + \varepsilon_i$
P3. <mark>iii</mark>	$\ln(\frac{GDP_{t,t,t}}{GDP_{t,t,t-1}}) = C + \ln(GDP_{t,t,t-1})$	$(1) + \ln(\frac{INVR_{t,t,r}}{INVR_{t,t,r-1}}) + \ln(\frac{LABOR_{t,t,r}}{LABOR_{t,t,r-1}}) + \ln(\frac{OTHR_{t,t,r}}{OTHR_{t,t,r}}) + \ln(S \& E_{t,t,r-tag}) + a_t + \varepsilon_r$
P3. <mark>i</mark> ii(b)	$\ln(\frac{GDP_{i,i,t}}{GDP_{i,i,t-1}}) = C + \ln(GDP_{i,i,t-1})$	$1) + \ln(\frac{INVR_{i_i,i_i,t}}{INVR_{i_i,i_i,t-1}}) + \ln(\frac{LABOR_{i_i,i_i}}{LABOR_{i_i,i_i-1}}) + \ln(\frac{OTHR_{i_i,i_i}}{OTHR_{i_i,i_i}}) + \ln(S \& E_{i_i,i_i-lag}) + a_i + \tau + \varepsilon_i$

4.2.3 Panel All-Country Results

The results presented next were run using all available countries as gathered from the various data sources listed in the Data Section previously. Given the vast diversity in educational and economic systems, it is not surprising that the results are largely inconclusive. Many of the points are statistically insignificant and the resulting elasticities are lower in magnitude than had been found previously. There is a general peeking around year 3 to 4 and 7 to 8, not too different from previously revealed trends, but such inference is weak given the statistics behind the results. The following graphs show the panel data run with all countries overlaid on the previous graph of the results from the first panel data set. To provide a bit more clarity, this is followed by another graph that shows the plots of the panel results for all countries against the plotted points from the first data set for contrast.

						Х
Model	S&E Coef	SE(S&E)	Model F-stat	Obs	Lag	Sections
P1.i	0.042	0.016	3355.667	534	3	101
P1.i(b)	0.070	0.019	1568.274	534	3	101
P1.ii	0.036	0.014	4.279	534	3	101
P1.ii(b)	0.026	0.013	6128.291	459	3	93
P1.iii	0.026	0.013	9.118	459	3	93
P2.i	0.034	0.014	11.292	164	7	51

Table 13: S&E Coefficients with statistics for model variants using Data Set 2 (all countries)

Average 0.040 SD of Avg 0.018; done for 3 year lag only

Where the models are:

المنسارات

Model	Equation Form
P1.i	$\ln(GDP_t) = C + \ln(GDP_{t-1}) + \ln(S \& E_{t-log}) + a_i + \varepsilon_t$
P1.i(b)	$\ln(GDP_i) = C + \ln(GDP_{i-1}) + \ln(S \& E_{i-lag}) + a_i + \tau + \varepsilon_i$
P1.ii	$\ln(\frac{GDP_{i,t}}{GDP_{i,t}}) = C + \ln(GDP_{i,t-1}) + \ln(S \& E_{i,t-iag}) + a_i + \tau + \varepsilon_t$
P1.ii(b)	$\ln(GDP_{i,t}) = \ln(GDP_{i,t-1}) + \ln(CAP_{i,t}) + \ln(S \& E_{i,t-iag}) + a_i + \varepsilon_t$
P1.iii	$\ln\left(\frac{GDP_{t_{q}}}{GDP}\right) = \ln\left(GDP_{t_{q-1}}\right) + \ln\left(CAP_{t_{q}}\right) + \ln\left(S\&E_{t_{1}-\log}\right) + \tau + \alpha_{1} + \varepsilon_{1}$
P2.i	$\ln(\frac{\overline{GD}_{i}^{P}}{GDP_{i-1}}) = C + \ln(GDP_{i-1}) + \ln(\frac{CAP_{i}}{CAP_{i-1}}) + \ln(\frac{UNEM_{i}}{UNEM_{i-1}}) + \ln(S \& E_{i,i-iag}) + \ln(\frac{POP_{i,i}}{POP_{i,i}}) + a_{i} + \tau + \varepsilon_{i}$

The model two results, as with the USA-Only analysis result in larger elasticities on the average.

Table 14: S&E coefficients with statistics for type 2 panel models using data set 2 (all countries)

Model	S&E Coef	SE(S&E)	Model F-stat	Obs	Lag
P2.i	0.072	0.024	11.840	105	6
P2.i(b)	0.068	0.024	11.620	105	6
P2.ii	0.062	0.030	23.500	110	7
P2.ii(b)	0.057	0.029	22.919	110	7
P3.iii	0.054	0.020	23.304	87	7
P3.iii(b)	0.053	0.020	22.273	87	7
	0.061	SD of Avg	0.008		
,e. uge	0.001	55 5.7.08	0.000		

Where the models are:

Model	Equation Form
P2.i	$\ln(\frac{GDP_i}{GDP_{i-1}}) = C + \ln(GDP_{i-1}) + \ln(\frac{CAP_i}{CAP_{i-1}}) + \ln(\frac{UNEM_i}{UNEM_{i-1}}) + \ln(OTHGR_{i-lag}) + \ln(S \& E_{i-lag}) + \varepsilon_i$
P2.i(b)	$\ln(\frac{GDP_i}{GDP_{i-1}}) = C + \ln(GDP_{i-1}) + \ln(\frac{CAP_i}{CAP_{i-1}}) + \ln(\frac{UNEM_i}{UNEM_{i-1}}) + \ln(OTHGP_{P-lag}) + \ln(S \& E_{i-lag}) + \tau + \varepsilon_i$
P2.ii	$\ln(\frac{GDP_i}{GDP_{-1}}) = C + \ln(GDP_{i-1}) + \ln(\frac{INVP_i}{INVP_{i-1}}) + \ln(\frac{UNEM_i}{UNEM_i}) + \ln(OTHGP_{iag}) + \ln(S \& E_{i-iag}) + \varepsilon_i$
P2.ii(b)	$\ln(\frac{GDP_i}{GDP_{i-1}}) = C + \ln(GDP_{i-1}) + \ln(\frac{INVR_i}{INVR_{i-1}}) + \ln(\frac{UNEM_i}{UNEM_{i-1}}) + \ln(OTHGR_{i-lag}) + \ln(S \& E_{i-lag}) + \tau + \varepsilon_i$
P3.iii	$\ln(\frac{GDP_{i,t}}{GDP_{i,t-1}}) = C + \ln(GDP_{i,t-1}) + \ln(\frac{INVR_{i,t}}{INVR_{i,t-1}}) + \ln(\frac{LABOR_{i,t}}{LABOR_{i,t-1}}) + \ln(\frac{OTHR_{i,t}}{OTHR_{i,t}}) + \ln(S \And E_{i,t-le_k}) + \varepsilon_t$
P3.iii(b)	$\ln(\frac{GDP_{i,\tau}}{GDP_{i,\tau-1}}) = C + \ln(GDP_{i,\tau-1}) + \ln(\frac{INVR_{i,\tau}}{INVR_{i,\tau-1}}) + \ln(\frac{LABOR_{i,\tau}}{LABOR_{i,\tau-1}}) + \ln(\frac{OTHR_{i,\tau}}{OTHR_{i,\tau}}) + \ln(S \& E_{i,\tau-iq_2}) + \tau + \varepsilon_{\tau}$

4.3 Summary of Panel Results

For the all countries or OECD countries modeling, the lag of S&E graduates to maximum economic impact tended to be later than the USA only modeling. This could be inferred as either a higher quality of education or preparation of S&E graduates, or it could be that industry is better able to receive and extract production from S&E graduates in the USA. The modeling significance was spottier than USA only modeling and rendered more S&E points insignificant, which weakens the ability to contrast the USA and other countries. That said, it does seem that the impact of S&E graduates is lower overall (average 0.06) than in the USA alone (average 0.2) as the elasticities are lower. The result is perhaps not surprising given the large variances in educational systems, graduates, economic statuses and so on for the different countries included.

4.4 Alternative Analyses of the Study

In addition to the overall goal of whether a link between S&E and economic factors exist, the data gathered lent itself to a few other models. The first was whether there is a link between patents and S&E, which resulted in statistically significant models across the range of lagged

years from graduation and provided an elasticity of 1.97 on the average, indicating a 1% increase in S&E will result in a 1.97% increase in US patents. Given the educational trends presented previously, some correlation may be made in patent trending; where in 2009, non-U.S. companies gained the majority, 51%, of U.S. patents (Gathering Storm Committe of the National Academy of Sciences, 2010).

Using model variants of Type 1 and Type 2 using the OECD data set, the economic impact between S&E and humanities was also modeled. In this case, half of the S&E models (per given year of lag) were significant statistically and resulted in an average elasticity with GDP of 0.04. The humanities graduates for that same range resulted in an elasticity of -0.07 but where typically statistically insignificant. An example output at 3 years of lag between engineering, humanities and social science is provided below. Most often, the modeling did not result in statistically significant coefficients for each discipline of graduate and thus correlation inference is limited.

Table 15: cross discipline panel output for oecd data set at 3 year lag

Dependent Variable: LOG(GDP1/GDP1(-1)) Method: Panel Least Squares Date: 09/08/11 Time: 17:54 Sample (adjusted): 2001 2009 Periods included: 9 Cross-sections included: 12 Total panel (unbalanced) observations: 100 White cross-section standard errors & covariance (d.f. corrected)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	0 147094	0 210192	0 600704	0.496
C C	-0.147064	0.210182	-0.099794	0.460
LOG(GDP1(-1))	-0.027024	0.021212	-1.274	0.2063
LOG(CAP/CAP(-1))	0.166587	0.06825	2.44084	0.0168
LOG(UNEM/UNEM(-1))	-0.090567	0.038452	-2.355306	0.0209
LOG(ENGN(-3))	0.063539	0.019311	3.29024	0.0015
LOG(HUMNO(-3))	-0.013642	0.01755	-0.777337	0.4392
LOG(SOCSN(-3))	-0.005972	0.011729	-0.5092	0.612

Effects Specification

Cross-section fixed (dummy variables)								
R-squared	0.647185	Mean dependent var	0.040896					
Adjusted R-squared	0.57404	S.D. dependent var	0.038757					
S.E. of regression	0.025295	Akaike info criterion	-4.35487					
Sum squared resid	0.052467	Schwarz criterion	-3.88594					
Log likelihood	235.7435	Hannan-Quinn criter.	-4.165085					
F-statistic	8.84801	Durbin-Watson stat	1.849935					
Prob(F-statistic)	0							

In kind with the modeling done solely of the USA, the Chinese models were run and resulted in a general trend in which maximum economic impact occurred in year 2 to 2.5 years as compared to the 3.5 for the USA. However, fewer of the points in the models were statistically significant, as can be seen and exemplified in the table provided below. For all models and all points (years of lag), the average elasticity between S&E graduates and GDP was 0.05 with a standard deviation of 0.07, though these points include large and insignificant coefficients of both polarities. Of those years per variant that were statistically significant, the average elasticity was higher at 0.07 with a lower deviation of 0.009 and were nearly always within the first three years of lag.

Table 16: results of the china-only model for range of lagged years 0 to 8

China Only:
$$\ln(\frac{GDP_t}{GDP_{t-1}}) = C + \ln(GDP_{t-1}) + \ln(\frac{CAP_t}{CAP_{t-1}}) + \ln(\frac{UNEM_t}{UNEM_{t-1}}) + \ln(\frac{S \& E_t}{S \& E_{t-1}}) + \tau + \varepsilon_t$$

S&E Lag	GDP	Constant	GDP-1	САР	UNEM	S&E	τ
0	Growth	13.89437	0.019678	0.307834***	-0.105475**	0.055673**	-0.007341
1	Growth	30.87903	0.098668	0.571764***	-0.063488	0.060277**	-0.016176
2	Growth	26.38462	0.077419	0.305601***	-0.119133***	0.070759***	-0.013895
3	Growth	28.19985	0.106051	0.580397***	-0.174017**	0.042912	-0.014747
4	Growth	33.27913	0.154666	0.284051***	-0.130245**	0.025843	-0.01735
5	Growth	58.1697	0.182998	0.604619***	-0.314084**	0.16024	-0.030749
6	Growth	27.81779	0.141341	0.37256***	-0.206525**	0.00965	-0.014471
7	Growth	33.3186	0.241639	0.789342**	-0.20414	-0.135091	-0.016738
8	Growth	58.89693	0.221157	0.449616***	-0.057499	0.157698	-0.031227

5. Conclusion

There are clear trends in the USA with regard to a stagnant growth in S&E, particularly engineering, and in greater contrast when considered per capita. Meanwhile certain Asian counties, such as China and Taiwan, have experienced growth in S&E graduates beyond mere population growth. India presents a similar case. This has caught the eye of alarmists and so discussions have ensued over offshoring, national security, economic loss and future impact. Alarmists and proponents of policies promoting more science, engineering and math have pointed out the trends in overseas growth and US offshoring with a flurry of statistics and data. The more conservative or reserved in the discussion believe the numbers reported by China, India and others are either exaggerated or not directly comparable. The work presented herein does not settle that debate but does examine whether a statistical link exists between graduates in engineering and economic growth, such as GDP or national income. This work also found a statistical link between the number of S&E graduates and patents.

The initial modeling focused solely on the USA and showed a statistically significant impact on the economy from S&E graduates. Type 1 modeling resulted in an average elasticity of 0.116 and Type 2 an average of 0.264 between GDP and S&E Graduates. This does seem to be of import for those concerned over relatively stagnant engineering growth that dampens S&E growth of graduates over the past couple of decades. A large portion of the many variants that were regressed showed a maximum impact occurred approximately 3.5 years to 4 years after graduation. The panel models were run for all countries available and for OECD, which showed a maximum impact further away from graduation. In the all-countries case, it appears to be centered near year 7. The elasticities of these various models were lower than the USA-Only modeling, where Type 1 models averaged 0.04 and Type 2, 0.06 respectively, for the data set containing all available countries. The statistical evidence was less robust for the all-countries regressions but indicates that the USA is able to get more on average from S&E at a quicker pace than other countries. However, previous studies of individual countries such as that by Lin

(2004) showed that Taiwanese S&E graduates had a larger impact than the one found herein for the USA. Also, regression analysis done with just Chinese data showed that the maximum impact gained from S&E graduates in China was slightly quicker than the USA. As such, it is likely that the lag between impact and the magnitude of that impact varies greatly amongst countries and the USA results are not at either extreme for either magnitude or lag.

The results could be seen as an affirmation for the alarmists that wish to use public policy, social influences, media, etc to generate a greater interest in science and engineering among the youth of the nation. However, determining how much interest, how many S&E graduates are truly needed and similar assessments would require a study of markets, both domestic and international, and demand for such as unbridled growth in any discipline will reach points of ineffectiveness or even become a detriment. As such, it would have to be combined with strategic planning and initiatives so that S&E graduates have a place to produce within industry.

Bibliography

- Baldwin, N., & Borrelli, S. A. (2008). Education and economic growth in the United States: cross-national applications for an intra-national path analysis. *Policy Sciences*, 183-204.
- Barro, R. J., & Sala-i-Martin, X. (2004). *Economic Growth*. Boston: Massachusetts Institute of Technology.
- Bloom, D., Canning, D., & Chan, K. (2006, February). Higher Education and Economic Development in Africa. Boston: Harvard University. Retrieved July 21, 2011
- De Meulemeester, J.-L., & Rochat, D. (1995). A Causality Analysis of the Link Between Higher Education and Economic Development. *Economies of Education Review*, 351-361.
- Deloitte, O. a. (2009). *People and profitability: A Time for Change*. The Manufacturing Institute, Oracle Inc.
- Gathering Storm Committe of the National Academy of Sciences. (2010). *Rising Above the Gathering Storm, Revisited: Rapidly Approaching Category 5.* Washington D.C.: National Academies Press.
- Lin, T.-C. (2004). The role of higher education in economic development: an empirical study of Taiwan case. *Journal of Asian Economics*, 355-371.
- Lowel, B. L., Salzman, H., Bernstein, H., & Henderson, E. (2009). Steady as She Goes? Three Generations of Students through the Science and Engineering Pipeline . *Institute for the Study of International Migration, Georgetown University.*
- National Science Board. (2010). *Science and Engineering Indicators*. Arlington, VA: National Science Foundation.
- Organization for Economic Cooperation and Development. (2009). *Education at a Glance 2009: OECD Indicators*. Paris: http://www.oecd.org/document/24/0,3343,en_2649_39263238_.
- Pencavel, J. (1993). Higher Education, Economic Growth and Earnings. In W. Becker, & L. Kluwer, *Higher Education and Economic Growth* (p. 10). Boston: Kluwer Academic Publishers.

Rotherham, A. J. (2011, May 26). The Next Great Resource Shortage: U.S. Scientists. Time.

- Saxenian, A. (2006). International Mobility of Engineers and the Rise of Entrepreneurship in the Periphery. *UNU-WIDER*, 142-164.
- Sturtevant, D. (2008). America Disrupted: Dynamics of the Technical Capability Crisis. MIT Press.
- Wadhwa, V., Gereffi, G., Rissing, B., & Ong, R. (2005). Where the Engineers Are. *Issues in Science and Technology*.
- Weiss, T. (2009, June 03). The 10 Hardest Jobs To Fill In America. Forbes.
- Wolff, E. N. (2000). *Human capital investment and economic growth: exploring the crosscountry evidence*. Structural Change and Economic Dynamics.

36

Appendix A: summary Results for model 1 variants across range of lag

Model 1.i Results:

 $\log(GDP_t) = C + \log(GDP_{t-1}) + \log(S \& E_{t-lag}) + \varepsilon_t$

S&E Lag	GDP	Constant	GDP-1	S&E	Note
0	Value	0.001498	0.970548*	0.072373*	White heteroskedasticity-consistent standard errors & covariance
1	Value	-0.125627	0.964828***	0.095536***	White heteroskedasticity-consistent standard errors & covariance
2	Value	-0.091222	0.960978***	0.101821***	White heteroskedasticity-consistent standard errors & covariance
3	Value	-0.262659	0.954363***	0.130614***	White heteroskedasticity-consistent standard errors & covariance
4	Value	-0.257912	0.95152***	0.136962***	White heteroskedasticity-consistent standard errors & covariance
5	Value	0.165545	0.956154***	0.093187***	White heteroskedasticity-consistent standard errors & covariance
6	Value	0.374489	0.957862***	0.072928***	White heteroskedasticity-consistent standard errors & covariance
7	Value	0.436791	0.956759***	0.070666**	White heteroskedasticity-consistent standard errors & covariance
8	Value	0.454209	0.957224***	0.068293	White heteroskedasticity-consistent standard errors & covariance

$$\log(GDP_t) = C + \log(GDP_{t-1}) + \log(S \& E_{t-lag}) + \tau + \varepsilon_t$$

Model 1.i(b) Results:

S&E Lag	GDP	Constant	GDP-1	S&E	τ	Note
0	Value	6.578393	1.020211***	0.120994***	-0.004346*	White heteroskedasticity-consistent standard errors & covariance
1	Value	4.80368	1.003819***	0.114669***	-0.003172	White heteroskedasticity-consistent standard errors & covariance
2	Value	2.769274	0.984232***	0.109779***	-0.001829	White heteroskedasticity-consistent standard errors & covariance
3	Value	1.473851	0.968944***	0.133276***	-0.001103	White heteroskedasticity-consistent standard errors & covariance
4	Value	-0.578882	0.948724***	0.136957***	0.000202	White heteroskedasticity-consistent standard errors & covariance
5	Value	-3.032102	0.927287***	0.097542***	0.002003	White heteroskedasticity-consistent standard errors & covariance
6	Value	-4.792439	0.909585***	0.084632***	0.00323*	White heteroskedasticity-consistent standard errors & covariance
7	Value	-6.802641**	0.886607***	0.092939***	0.004526**	White heteroskedasticity-consistent standard errors & covariance
8	Value	-8.330841***	0.868658***	0.102755**	0.005495***	White heteroskedasticity-consistent standard errors & covariance

$$\ln(\frac{GDP_t}{GDP_{t-1}}) = C + \ln(GDP_{t-1}) + \ln(S \& E_{t-lag}) + \tau + \varepsilon_t$$

S&E Lag	GDP	Constant	GDP-1	S&E	τ	Note
0	Growth	6.578393*	0.020211	0.120994***	-0.004346*	White heteroskedasticity-consistent standard errors & covariance
1	Growth	4.80368	0.003819	0.114669***	-0.003172	White heteroskedasticity-consistent standard errors & covariance
2	Growth	2.769274	-0.015768	0.109779***	-0.001829	White heteroskedasticity-consistent standard errors & covariance
3	Growth	1.473851	-0.031056	0.133276***	-0.001103	White heteroskedasticity-consistent standard errors & covariance
4	Growth	-0.578882	-0.051276*	0.136957***	0.000202	White heteroskedasticity-consistent standard errors & covariance
5	Growth	-3.032102	-0.072713**	0.097542***	0.002003	White heteroskedasticity-consistent standard errors & covariance
6	Growth	-4.792439	- 0.090415***	0.084632***	0.00323*	White heteroskedasticity-consistent standard errors & covariance
7	Growth	-6.802641**	- 0.113393***	0.092939***	0.004526**	White heteroskedasticity-consistent standard errors & covariance
8	Growth	- 8.330841***	- 0.131342***	0.102755**	0.005495***	White heteroskedasticity-consistent standard errors & covariance

Model 1.ii	ii Results:				$\ln(\frac{GDP_t}{GDP_{t-1}}) = C + \ln(GDP_{t-1}) + \ln(S \& E_{t-lag}) + \ln(INVR_t) + \varepsilon_t$		
S&E Lag	GDP	Constant	GDP-1	INVR	S&E	Note	
0	Growth	1.02255***	- 0.191454***	0.158018***	0.020844	White heteroskedasticity-consistent standard errors & covariance	
1	Growth	0.736102**	- 0.184787***	0.145091***	0.056068*	White heteroskedasticity-consistent standard errors & covariance	
2	Growth	0.764954***	- 0.180763***	0.138688***	0.058582***	White heteroskedasticity-consistent standard errors & covariance	
3	Growth	0.559663**	- 0.174057***	0.126732***	0.085385***	White heteroskedasticity-consistent standard errors & covariance	
4	Growth	0.582966**	- 0.180573***	0.130035***	0.091473***	White heteroskedasticity-consistent standard errors & covariance	
5	Growth	0.831817***	- 0.189153***	0.138223***	0.073946***	White heteroskedasticity-consistent standard errors & covariance	
6	Growth	0.943762***	- 0.201208***	0.147456***	0.072871***	White heteroskedasticity-consistent standard errors & covariance	
7	Growth	1.062721***	- 0.207396***	0.15198***	0.068001***	White heteroskedasticity-consistent standard errors & covariance	
8	Growth	1.247708***	- 0.212458***	0.158125***	0.051761	White heteroskedasticity-consistent standard errors & covariance	

Model 1.iii Results:

 $\ln(GDP_t) = \ln(GDP_{t-1}) + \ln(INVR_t) + \ln(S \& E_{t-lag}) + \varepsilon_t$

Model 1.iv Results:

_				_	_	
S&E Lag	GDP	Constant	GDP-1	INVR	S&E	Note
	Value	1 02255**	0 808546***	0 158018***	0 020844	White heteroskedasticity-consistent standard
0	Value	1.02255	0.0003 10	0.150010	0.020011	errors & covariance
	Value	0 726102**	0 915712***	0 1/5001***	0.056068*	White heteroskedasticity-consistent standard
1	value	0.730102	0.813213	0.143031	0.050008	errors & covariance
	Value	0 764054***	0 010007***	0 12000***	0 050503***	White heteroskedasticity-consistent standard
2	value	0.764954	0.819237	0.138088	0.058582	errors & covariance
	Malua	0 550000***	0 0 0 0 0 0 1 0 * * *	0 4 2 6 7 2 2 * * *	0.005205***	White heteroskedasticity-consistent standard
3	value	0.559663***	0.825943***	0.126732***	0.085385***	errors & covariance
	Value	0 502000**	0 010107***	0 4 2 0 0 2 5 * * *	0 001 172***	White heteroskedasticity-consistent standard
4	value	0.582966**	0.819427***	0.130035***	0.091473***	errors & covariance
	Malua	0 001017***	0 010017***	0 420222***	0.072040***	White heteroskedasticity-consistent standard
5	value	0.831817***	0.810847***	0.138223***	0.073946***	errors & covariance
		0.040762***	0 700703***	0 4 47 45 6***	0 072074***	White heteroskedasticity-consistent standard
6	value	0.943762***	0.798792***	0.147456***	0.072871***	errors & covariance
		4 0 0 2 2 4 * * *	0 702004***	0 4 5 4 0 0 * * *	0.00004***	White heteroskedasticity-consistent standard
7	value	1.062721***	0.792604***	0.15198***	0.068001***	errors & covariance
	N/-1	4 2 4 7 7 0 0 * * *	0 7075 40***	0 4 5 0 4 3 5 * * *	0.054764	White heteroskedasticity-consistent standard
8	value	1.247708***	0.787542***	0.158125***	0.051761	errors & covariance

Model	2.i Result	ts:		$\ln(\frac{GDP_t}{GDP_{t-1}})$	$) = C + \ln(\frac{CAP_{t}}{CAP_{t-1}})$	$+\ln(\frac{UNEM_{t}}{UNEM_{t-1}})$	$+\ln(GRAD_{t-lag}) + \ln(S \& E_{t-lag}) + \varepsilon_t$
S&E Lag	GDP	Constant	САР	UNEM	GRADS	S&E	Note
0	Growth	0.9949**	0.100096	-0.053948	-0.117734	0.054871	White heteroskedasticity-consistent standard errors & covariance
1	Growth	1.081892**	0.128581	-0.04382	-0.176418	0.111798	White heteroskedasticity-consistent standard errors & covariance
2	Growth	0.336275	0.022768	-0.124895***	0.157783*	-0.192658**	White heteroskedasticity-consistent standard errors & covariance
3	Growth	1.184332**	0.173628*	-0.04096	-0.286461***	0.223288**	White heteroskedasticity-consistent standard errors & covariance
4	Growth	1.158689**	0.168877**	-0.059648*	-0.333666***	0.276612***	White heteroskedasticity-consistent standard errors & covariance
5	Growth	1.041023**	0.177479**	-0.067576*	-0.385381***	0.34203***	White heteroskedasticity-consistent standard errors & covariance
6	Growth	0.905352**	0.155172*	-0.069667**	-0.366741**	0.332361*	White heteroskedasticity-consistent standard errors & covariance
7	Growth	0.728658**	0.146776*	-0.056672*	-0.337678*	0.314551*	White heteroskedasticity-consistent standard errors & covariance
8	Growth	0.705809**	0.14327*	-0.040455	-0.292435*	0.26705*	White heteroskedasticity-consistent standard errors & covariance

Model 2.i(b) Results

S&E Lag	GDP	Constant	САР	UNEM	GRADS	S&E	Note
0	Growth	5.961706***	0.096627	-0.055141	0.096308	0.076491	White heteroskedasticity-consistent standard errors & covariance
1	Growth	5.929141	0.142583*	-0.022053	0.006931	0.175887	White heteroskedasticity-consistent standard errors & covariance
2	Growth	5.852027	0.200229**	0.00164	-0.103421	0.299034**	White heteroskedasticity-consistent standard errors & covariance
3	Growth	5.368775	0.189246**	-0.022653	-0.090662	0.278025***	White heteroskedasticity-consistent standard errors & covariance
4	Growth	5.471734	0.170943**	-0.053755	-0.115494	0.338571***	White heteroskedasticity-consistent standard errors & covariance
5	Growth	6.689759**	0.144065*	-0.089256**	-0.085719	0.43579***	White heteroskedasticity-consistent standard errors & covariance
6	Growth	6.270494***	0.121795**	- 0.102824***	-0.044618	0.399039***	White heteroskedasticity-consistent standard errors & covariance
7	Growth	5.349208***	0.108287*	- 0.096418***	0.049644	0.269776**	White heteroskedasticity-consistent standard errors & covariance
8	Growth	4.458181***	0.123824**	- 0.082343***	0.088436	0.16641	White heteroskedasticity-consistent standard errors & covariance

$$\ln(\frac{GDP_{t}}{GDP_{t-1}}) = C + \ln(GDP_{t-1}) + \ln(\frac{CAP_{t}}{CAP_{t-1}}) + \ln(\frac{UNEM_{t}}{UNEM_{t-1}}) + \ln(OTHGP_{t-1}) + \ln(S \& E_{t-1ag}) + \varepsilon_{t}$$

Model 2.ii Results:

S&E Lag	GDP	Constant	GDP-1	САР	UNEM	OTH-GRAD	S&E	Note
0	Growth	-0.176601	-0.079402**	0.080451	-0.066717**	0.127173	0.066134	White heteroskedasticity- consistent
1	Growth	-0.190763	-0.074348**	0.113844	-0.036724	0.048713	0.138838	White heteroskedasticity- consistent
2	Growth	-0.311479	-0.074162*	0.175727**	-0.00876	-0.040628	0.242496**	White heteroskedasticity- consistent
3	Growth	-0.505253	-0.076048*	0.173426**	-0.026711	-0.033456	0.254663***	White heteroskedasticity- consistent
4	Growth	-0.788578	-0.078817**	0.156789*	-0.058452*	-0.060568	0.312232***	White heteroskedasticity- consistent
5	Growth	- 1.254481**	-0.086857***	0.127747**	-0.092052***	-0.063964	0.371246***	White heteroskedasticity- consistent
6	Growth	- 1.240457**	-0.079555***	0.105213**	-0.100464***	-0.031604	0.319274***	White heteroskedasticity- consistent
7	Growth	-1.14547**	-0.069916***	0.093721	-0.093632***	0.028112	0.226527***	White heteroskedasticity- consistent
8	Growth	-0.890368*	-0.060959***	0.105422*	-0.083732***	0.064063	0.147836*	White heteroskedasticity- consistent

Model 2.iii Results:

$$ln(\frac{GDP_{i}}{GDP_{i-1}}) = C + ln(GDP_{i-1}) + ln(\frac{INVR_{i}}{INVR_{i-1}}) + ln(\frac{UNEM_{i}}{UNEM_{i-1}}) + ln(OTHGR_{i-lag}) + ln(S & E_{i-lag}) + \varepsilon_{i}$$

 S&E Lag
 GDP
 Constant
 GDP-1
 INVR
 UNEM
 OTH-GRAD
 S&E
 Note

 o
 Growth
 0.29816
 -0.035304*
 0.213187***
 0.012196
 -0.022844
 0.085656
 White heteroskedasticity-consistent

 o
 Growth
 0.171315
 -0.038032**
 0.240023***
 0.037688
 -0.088522
 0.171324**
 White heteroskedasticity-consistent

 a
 Growth
 -0.100426
 -0.047974***
 0.232556***
 0.036498
 -0.091967*
 0.219269***
 White heteroskedasticity-consistent

 a
 Growth
 -0.567232*
 -0.059792***
 0.230392***
 -0.012858
 -0.043571
 0.232364***
 White heteroskedasticity-consistent

 a
 Growth
 -0.869753**
 -0.068038***
 0.159542***
 -0.04455
 -0.005824
 0.232564***
 White heteroskedasticity-consistent

 a
 Growth
 -0.869753**
 -0.068038***
 0.159542***
 -0.012858
 -0.043571
 0.232364***
 White heteroskedasticity-consistent

Statistically Detailed Outputs of Model 1 at 4 year lag - USA only regression

1.i	$log(GDP_i) =$	$C + \log(GDP_{i})$	1) + log(S	$\& E_{i-\log}) + $	ε,					
Dependent Variable: LOG(TSC_GDP) Method: Least Squares Sample (adjusted): 19 Included observations: 37 after adjustments White heteroskedasticity-consistent standard errors & covariance										
Variable	Coefficient	Std. Error	t-Stat	Prob.						
с	-0.257912	0.192255	-1.342	0.1886						
LOG(TSC_GDP(-1))	0.95152	0.006506	146.25	0						
LOG(MT_NSF_BS(-4))	0.136962	0.02617	5.2336	0						
R-squared	0.999568	Mean depend	dent var	29.11615						
Adjusted R-squared	0.999542	S.D. depende	nt var	0.758481						
S.E. of regression	0.016231	Akaike info c	riterion	-5.32621						
Sum squared resid	0.008957	Schwarz crite	rion	-5.19559						
Log likelihood	101.5348	Hannan-Quin	n criter.	-5.28016						
F-statistic	39291.05	Durbin-Watso	on stat	1.926442						
Prob(F-statistic)	0									
	· ·									
Breusch-Godfrey Seria	al Correlation I	.M Test:								
F-statistic	0.586373	Prob. F(8,26)	0.7799						
Obs*R-squared	5.655293 F	rob. Chi-Squar	e(8)	0.6858						

1.ii	$\ln(\frac{GD}{GD})$	$\frac{\partial P_i}{P_{i-1}} = C + \ln(1)$	$GDP_{i-1}) +$	$\ln(S \& E_{i-lag})$	$) + \varepsilon_i$	
Dependent Variable: L	.OG(TSC_GDP/T	rsc_gdp(-1))				
Method: Least Square	s		:	Sample (adjusted): 1970 2006		
Included observations	: 37 after adjus	tments				
White heteroskedasti	city-consistent	standard error	rs & covari	ance		
Variable	Coefficient	Std. Error	t-Stat	Prob.		
с	-0.257912	0.192255	-1.342	0.1886		
LOG(TSC_GDP(-1))	-0.04848	0.006506	-7.452	0		
LOG(MT_NSF_BS(-4))	0.136962	0.02617	5.2336	0		

R-squared	0.999568	Mean dependent var	29.11615
Adjusted R-squared	0.999528	S.D. dependent var	0.758481
S.E. of regression	0.016471	Akaike info criterion	-5.27258
Sum squared resid	0.008953	Schwarz criterion	-5.09843
Log likelihood	101.5428	Hannan-Quinn criter.	-5.21119
F-statistic	25434.54	Durbin-Watson stat	1.921727
Prob(F-statistic)	0		

المنسارات

Breusch-Godfrey Serial Correlation LM Test:						
F-statistic	0.586373	Prob. F(8,26)	0.7799			
Obs*R-squared	5.655293	Prob. Chi-Square(8)	0.6858			

46

1.iii	$\ln(\frac{GDP_i}{GDP_{i-1}}) = 0$	$C + \ln(GDP_{t-1})$	+1n(<i>S</i> & <i>E</i>	E_{t-lag}) +1n(IN	$VR_i) + \varepsilon_i$
Dependent Variable:	LOG(TSC_GDP/	TSC_GDP(-1))			
Method: Least Square	S			Sample (adju	isted): 1970 2006
Included observation:	s: 37 after adju	stments			
White heteroskedasti	city-consisten	t standard erro	rs & covari	iance	
Variable	Coefficient	Std. Error	t-Stat	Prob.	
с	0.582966	0.263647	2.2112	0.0341	
LOG(TSC_GDP(-1))	-0.180573	0.029116	-6.202	0	
LOG(INVR)	0.130035	0.028082	4.6305	0.0001	
LOG(MT_NSF_BS(-4))	0.091473	0.027269	3.3545	0.002	
R-squared	0.765035	Mean depend	dent var	0.070718	
Adjusted R-squared	0.743674	S.D. depende	ent var	0.025335	
S.E. of regression	0.012827	Akaike info c	riterion	-5.77277	
Sum squared resid	0.005429	Schwarz crite	rion	-5.59862	
Log likelihood	110.7963	Hannan-Quin	n criter.	-5.71138	
F-statistic	35.81542	Durbin-Watso	on stat	1.527265	
Prob(F-statistic)	0				

Breusch-Godfrey Serial C	orrelation L	M Test:	
F-statistic	0.516832	Prob. F(4,29)	0.7239

Obs*R-squared	2.462109	Prob. Chi-Square(4)	0.6514
1-statistic	0.010002	F100.1 (4,20)	0.7235

1.iv	$\ln(GDP_t) = \ln(GDP_{t-1}) + \ln(INVR_t) + \ln(S \& E_{t-lag}) + \varepsilon_t$					
Dependent Variable: LOG(TSC_GDP)						
Method: Least Squares		Sample (adjusted): 1970 2006				
Included observations: 37 after adjustments						
White heteroskedasticity-consistent standard errors & covariance						

Variable	Coefficient	Std. Error	t-Stat	Prob.			
с	0.582966	0.263647	2.2112	0.0341			
LOG(TSC_GDP(-1))	0.819427	0.029116	28.144	0			
LOG(INVR)	0.130035	0.028082	4.6305	0.0001			
LOG(MT_NSF_BS(-4))	0.091473	0.027269	3.3545	0.002			
R-squared	0.999738	Mean depend	lent var	29.11615			
Adjusted R-squared	0.999714	S.D. dependent var		0.758481			
S.E. of regression	0.012827	Akaike info cr	iterion	-5.77277			
Sum squared resid	0.005429	Schwarz criter	rion	-5.59862			
Log likelihood	110.7963	Hannan-Quin	n criter.	-5.71138			
F-statistic	41949.6	Durbin-Watso	n stat	1.527265			
Prob(F-statistic)	0						
Breusch-Godfrey Serial Correlation LM Test:							

Obs*R-squared	2.462109 Pro	b. Chi-Square(4)	0.6514
F-statistic	0.516832	Prob. F(4,29)	0.7239

1.iii(b)	$\ln(\frac{GDP_{i}}{GDP_{i-1}})$	$= C + \ln(GDP_{-})$	i)+ln(S&	$E_{t-lag}) + \ln(IN)$	$VVR) + \tau + \varepsilon_i$			
Dependent Variable: LOG(TSC_GDP/TSC_GDP(-1))								
Method: Least Squar	es			Sample (adj	usted): 1970 2006			
Included observation	ns: 37 after adjus	tments						
White heteroskedas	ticity-consistent	standard error	s & covari	ance				
Variable	Coefficient	Std. Error	t-Stat	Prob.				
с	5.312581	2.300925	2.3089	0.0276				

.OG(TSC_GDP(-1))	-0.166833	0.028554	-5.843	0	
LOG(INVR)	0.155641	0.029508	5.2745	0	
LOG(MT_NSF_BS(-4))	0.082591	0.026361	3.1331	0.0037	
TimeTrend	-0.002877	0.001391	-2.068	0.0468	
R-squared	0.792733	Mean depend	lent var	0.070718	
Adjusted R-squared	0.766824	S.D. depende	nt var	0.025335	
S.E. of regression	0.012234	Akaike info cr	iterion	-5.84415	
Sum squared resid	0.004789	Schwarz criter	rion	-5.62646	
.og likelihood	113.1167	Hannan-Quini	n criter.	-5.7674	
F-statistic	30.59748	Durbin-Watso	n stat	1.649113	
Prob(F-statistic)	0				

Breusch-Godfrey Serial C	orrelation L	M Test:	
F-statistic	0.304184	Prob. F(4,28)	0.8727
Obs*R-squared	1.540869	Prob. Chi-Square(4)	0.8194

1.iv(b) In($(GDP_t) = \ln($	$(GDP_{t-1}) + \ln$	(INVR t) + ln(<i>S</i> &	$(E_{t-lag}) + \tau + \varepsilon_t$
Dependent Variable:	LOG(TSC_GDP/	TSC_GDP(-1))			
Method: Least Square	s			Sample (ad	ljusted): 1970 2006
Included observations	s: 37 after adju	stments			
White heteroskedasti	city-consisten	t standard erro	rs & covari	ance	
Variable	Coefficient	Std. Error	t-Stat	Prob.	
с	5.312581	2.300925	2.3089	0.0276	
LOG(TSC_GDP(-1))	0.833167	0.028554	29.179	0	
LOG(INVR)	0.155641	0.029508	5.2745	0	
LOG(MT_NSF_BS(-4))	0.082591	0.026361	3.1331	0.0037	
TimeTrend	-0.002877	0.001391	-2.068	0.0468	
R-squared	0.999769	Mean depend	dent var	29.11615	
Adjusted R-squared	0.99974	S.D. depende	ent var	0.758481	
S.E. of regression	0.012234	Akaike info c	riterion	-5.84415	
Sum squared resid	0.004789	Schwarz crite	rion	-5.62646	
Log likelihood	113.1167	Hannan-Quin	n criter.	-5.7674	
F-statistic	34586.86	Durbin-Watso	on stat	1.649113	
Prob(F-statistic)	0				
Breusch-Godfrey Seria	al Correlation I	M Test:			
F-statistic	0.304184	Prob. F(4,28)	0.8727	
Obs*R-squared	1.540869 F	rob. Chi-Squar	e(4)	0.8194	

Appendix B: Regression Results for model 2 variants at 4 years of lag

	Prob. 0.017 0.019 0.0565 0.0001 0.0016 0.060463 0.019866 -5.447706 -5.205765 -5.378036	mple (adjusted <u>& covariance</u> t-Stat 2.591761 2.541991 -2.018465 -4.716011 3.625009 endent var ident var dent var	SDP(-1)) San its Std. Error 0.447066 0.066435 0.029551 0.070752 0.076307	c_GDP/TSC_(er adjustmer isistent stand Coef. 1.158689 0.168877 -0.059648 -0.333666	Dependent Variable: LOG(TSC Method: Least Squares Included observations: 26 afte White heteroskedasticity-con Variable C LOG(KT_CAPB/KT_CAPB(-1))
	Prob. 0.017 0.019 0.0565 0.0001 0.0016 0.060463 0.019866 -5.447706 -5.205765 -5.378036	mple (adjusted t-Stat 2.591761 2.541991 -2.018465 -4.716011 3.625009 endent var ident var dent var	San hts dard errors & Std. Error 0.447066 0.066435 0.029551 0.070752 0.076307	er adjustmer isistent stand Coef. 1.158689 0.168877 -0.059648 -0.333666	Method: Least Squares Included observations: 26 afte White heteroskedasticity-con Variable C LOG(KT_CAPB/KT_CAPB(-1))
	Prob. 0.017 0.019 0.0565 0.0001 0.0016 0.060463 0.019866 -5.447706 -5.205765 -5.378036	t-Stat 2.591761 2.541991 -2.018465 -4.716011 3.625009 endent var ident var	nts dard errors & Std. Error 0.447066 0.066435 0.029551 0.070752 0.076307	coef. 1.158689 0.168877 -0.059648 -0.333666	Included observations: 26 afte White heteroskedasticity-con Variable C LOG(KT_CAPB/KT_CAPB(-1))
- -	Prob. 0.017 0.019 0.0565 0.0001 0.0016 0.060463 0.019866 -5.447706 -5.205765 -5.378036	t-Stat 2.591761 2.541991 -2.018465 -4.716011 3.625009 endent var ident var o stitorion	Std. Error 0.447066 0.066435 0.029551 0.070752 0.076307	Coef. 1.158689 0.168877 -0.059648 -0.333666	White heteroskedasticity-con Variable C LOG(KT_CAPR/KT_CAPR(-1))
	Prob. 0.017 0.019 0.0565 0.0001 0.0016 0.060463 0.019866 -5.447706 -5.4205765 -5.378036	t-Stat 2.591761 2.541991 -2.018465 -4.716011 3.625009 endent var ident var	Std. Error 0.447066 0.066435 0.029551 0.070752 0.076307	Coef. 1.158689 0.168877 -0.059648 -0.333666	Variable C
-	Prob. 0.017 0.019 0.0565 0.0001 0.0016 0.060463 0.019866 -5.447706 -5.205765 -5.378036	t-Stat 2.591761 2.541991 -2.018465 -4.716011 3.625009	Std. Error 0.447066 0.066435 0.029551 0.070752 0.076307	Coef. 1.158689 0.168877 -0.059648 -0.333666	Variable C LOG(KT_CAPR/KT_CAPR(-1))
	0.017 0.019 0.0565 0.0001 0.0016 0.060463 0.019866 -5.447706 -5.205765 -5.378036	2.591761 2.541991 -2.018465 -4.716011 3.625009	0.447066 0.066435 0.029551 0.070752 0.076307	1.158689 0.168877 -0.059648 -0.333666	C LOG(KT CAPR/KT CAPR(-1))
	0.017 0.019 0.0565 0.0001 0.0016 0.019866 -5.447706 -5.205765 -5.378036	2.591761 2.541991 -2.018465 -4.716011 3.625009 endent var	0.066435 0.029551 0.070752 0.076307	0.168877 -0.059648 -0.333666	LOG(KT CAPR/KT CAPR(-1))
	0.0565 0.0001 0.0016 0.060463 0.019866 -5.447706 -5.205765 -5.378036	-2.018465 -4.716011 3.625009 endent var	0.029551 0.070752 0.076307	-0.059648	
	0.0001 0.0016 0.060463 0.019866 -5.447706 -5.205765 -5.378036	-4.716011 3.625009	0.023331 0.070752 0.076307	-0.033046	
	0.0001 0.0016 0.019866 -5.447706 -5.205765 -5.378036	a.625009	0.076307		
	0.0016 0.019866 -5.447706 -5.205765 -5.378036	endent var ident var	0.076307	0.0356600	LOG(ET_NSF_BS(-4))
	0.060463 0.019866 -5.447706 -5.205765 -5.378036	endent var ident var		0.270012	LOG(INIT_INSF_BS(-4))
	0.000405 0.019866 -5.447706 -5.205765 -5.378036	ident var		0 547710	P. couprod
	-5.447706 -5.205765 -5.378036	o critorion	C D donon	0.347716	Adjusted D squared
	-5.205765 -5.378036		Akaika inf-	0.401309	Aujusteu K-squared
	-5.378036	itorion	Akaike Into	0.014577	Sup caused resid
	-3.378030	iterion	Schwarz Cri	75,82012	sum squared resid
	0.010407	um criter.	Hannan-Qu	/5.82018	Log likelinood
-	0.912437	itson stat	Durbin-Wat	0.357795	P-statistic
				0.001626	Prob(F-statistic)
					Provide Conference stal Correl
	0.7463	,		ation LIVI Tes	Breusch-Gootrey Serial Correl
	0.7403		-100. F(4,17)	0.485423	P-Statistic
	0.6153	e(4)	o. Chi-Square	2.66523)	Obs*R-squared
$_{g}) + \varepsilon_{i}$	$GRAD_{t-lag}$) + ln($S \otimes E_{t-la}$	(<u>UNEM</u> ,-1) + In(ample (adjuste	(<u>CAP</u>)+ln(GDP(-1)) Sar nts	n(GDP _{t-1}) + In C_GDP/TSC_ er adjustme	2.i(c) $\ln({GDP_{i-1}}) = C + \ln C$ Dependent Variable: LOG(TSC Method: Least Squares Included observations: 26 aft
		& covariance	dard errors 8	nsistent stan	White heteroskedasticity-cor
	Prob.	t-Stat	Std. Error	Coefficient	Variable
					_
	0.3359	-0.985946	0.741357	-0.730938	С
	0.0422	-2.1/0862	0.036281	-0.07876	
	0.0579		0.0770.77		LOG(TSC_GDP(-1))
	0.02	2.011985	0.077912	0.156757	LOG(TSC_GDP(-1)) LOG(KT_CAPR/KT_CAPR(-1))
	0.08	-1.844088	0.077912	0.156757	LOG(TSC_GDP(-1)) LOG(KT_CAPR/KT_CAPR(-1)) LOG(UNEM/UNEM(-1))
	0.08	-1.844088 -0.742348	0.077912 0.031709 0.120427	0.156757 -0.058474 -0.089399	LOG(TSC_GDP(-1)) LOG(KT_CAPR/KT_CAPR(-1)) LOG(UNEM/UNEM(-1)) LOG(ET_NSF_BS(-4))
_	0.08 0.4665 0.0001	2.011985 -1.844088 -0.742348 4.929272	0.077912 0.031709 0.120427 0.069142	0.156757 -0.058474 -0.089399 0.340821	LOG(TSC_GDP(-1)) LOG(KT_CAPR/KT_CAPR(-1)) LOG(UNEM/UNEM(-1)) LOG(ET_NSF_BS(-4)) LOG(MT_NSF_BS(-4))
_	0.08 0.4665 0.0001	2.011985 -1.844088 -0.742348 4.929272	0.077912 0.031709 0.120427 0.069142	0.156757 -0.058474 -0.089399 0.340821	LOG(TSC_GDP(-1)) LOG(KT_CAPR/KT_CAPR(-1)) LOG(UNEM/UNEM(-1)) LOG(ET_NSF_BS(-4)) LOG(MT_NSF_BS(-4))
_	0.08 0.4665 0.0001 0.060463	2.011985 -1.844088 -0.742348 4.929272	0.077912 0.031709 0.120427 0.069142 Mean depe	0.156757 -0.058474 -0.089399 0.340821 0.72364	LOG(TSC_GDP(-1)) LOG(KT_CAPR/KT_CAPR(-1)) LOG(UNEM/UNEM(-1)) LOG(ET_NSF_BS(-4)) LOG(MT_NSF_BS(-4)) R-squared
_	0.08 0.4665 0.0001 0.060463 0.019866 5 982324	2.011985 -1.844088 -0.742348 4.929272 bendent var ndent var	0.077912 0.031709 0.120427 0.069142 Mean deper	0.156757 -0.058474 -0.089399 0.340821 0.72364 0.654549 0.011675	LOG(TSC_GDP(-1)) LOG(KT_CAPR/KT_CAPR(-1)) LOG(UNEM/UNEM(-1)) LOG(ET_NSF_BS(-4)) LOG(MT_NSF_BS(-4)) R-squared Adjusted R-squared Q E of respression
_	0.08 0.4665 0.0001 0.060463 0.019866 -5.863384	2.011985 -1.844088 -0.742348 4.929272 bendent var ndent var fo criterion ritorion	0.077912 0.031709 0.120427 0.069142 Mean depe S.D. depen Akaike info	0.156757 -0.058474 -0.089399 0.340821 0.72364 0.654549 0.011676	LOG(TSC_GDP(-1)) LOG(KT_CAPR/KT_CAPR(-1)) LOG(UNEM/UNEM(-1)) LOG(ET_NSF_BS(-4)) LOG(MT_NSF_BS(-4)) R-squared Adjusted R-squared S.E. of regression
_	0.08 0.4665 0.0001 0.060463 0.019866 -5.863384 -5.573054 5 778770	2.011985 -1.844088 -0.742348 4.929272 bendent var ndent var fo criterion riterion	0.077912 0.031709 0.120427 0.069142 Mean deper S.D. deper Akaike info Schwarz cr	0.156757 -0.058474 -0.089399 0.340821 0.72364 0.654549 0.011676 0.002727 82 32322	LOG(TSC_GDP(-1)) LOG(KT_CAPR/KT_CAPR(-1)) LOG(KT_NSF_BS(-4)) LOG(ET_NSF_BS(-4)) LOG(MT_NSF_BS(-4)) R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood
_	0.08 0.4665 0.0001 0.060463 0.019866 -5.863384 -5.573054 -5.779779	2.011985 -1.844088 -0.742348 4.929272 bendent var ndent var fo criterion riterion Quinn criter.	0.077912 0.031709 0.120427 0.069142 Mean deper Akaike infr Schwarz cr Hannan-Qu	0.156757 -0.058474 -0.089399 0.340821 0.72364 0.654549 0.011676 0.002727 82.22399	LOG(TSC_GDP(-1)) LOG(KT_CAPR/KT_CAPR(-1)) LOG(KT_NSF_BS(-4)) LOG(ET_NSF_BS(-4)) LOG(MT_NSF_BS(-4)) R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood E-ctaticie
-	0.08 0.4665 0.0001 0.060463 0.019866 -5.863384 -5.573054 -5.779779 1.388998	2.011985 -1.844088 -0.742348 4.929272 wendent var ndent var fo criterion riterion uinn criter. fatson stat	0.077912 0.031709 0.120427 0.069142 Mean deper S.D. deper Akaike infr Schwarz cr Hannan-Qi Durbin-Wa	0.156757 -0.058474 -0.089399 0.340821 0.72364 0.654549 0.011676 0.002727 82.22399 10.47385	LOG(TSC_GDP(-1)) LOG(KT_CAPR/KT_CAPR(-1)) LOG(UNEM/UNEM(-1)) LOG(ET_NSF_BS(-4)) LOG(MT_NSF_BS(-4)) R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Drab(E-tatistic)
_	0.08 0.4665 0.0001 0.060463 0.019866 -5.863384 -5.573054 -5.779779 1.388998	2.011985 -1.844088 -0.742348 4.929272 bendent var ndent var fo criterion riterion riterion auinn criter.	0.077912 0.031709 0.120427 0.069142 Mean deper S.D. deper Akaike info Schwarz cr Hannan-Qu Durbin-Wa	0.156757 -0.058474 -0.089399 0.340821 0.72364 0.654549 0.011676 0.002727 82.22399 10.47385 0.000048	LOG(TSC_GDP(-1)) LOG(KT_CAPR/KT_CAPR(-1)) LOG(UNEM/UNEM(-1)) LOG(ET_NSF_BS(-4)) LOG(MT_NSF_BS(-4)) R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)
_	0.08 0.4665 0.0001 0.060463 0.019866 -5.863384 -5.573054 -5.779779 1.388998	2.011985 -1.844088 -0.742348 4.929272 bendent var ndent var fo criterion riterion juinn criter. latson stat	0.077912 0.031709 0.120427 0.069142 Mean depe S.D. deper Akaike infr Schwarz cr Hannan-Qu Durbin-Wa	0.156757 -0.058474 -0.089399 0.340821 0.72364 0.654549 0.011676 0.002727 82.22399 10.47385 0.000048	LOG(TSC_GDP(-1)) LOG(KT_CAPR/KT_CAPR(-1)) LOG(UNEM/UNEM(-1)) LOG(ET_NSF_BS(-4)) LOG(MT_NSF_BS(-4)) R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)
_	0.08 0.4665 0.0001 0.060463 0.019866 -5.863384 -5.573054 -5.779779 1.388998	2.011985 -1.844088 -0.742348 4.929272 bendent var ndent var fo criterion riterion tuinn criter. atson stat	0.077912 0.031709 0.120427 0.069142 Mean deper S.D. deper Akaike infr Schwarz cr Hannan-Qu Durbin-Wa	0.156757 -0.058474 -0.089399 0.340821 0.72364 0.654549 0.011676 0.002727 82.22399 10.47385 0.000048	LOG(TSC_GDP(-1)) LOG(KT_CAPR/KT_CAPR(-1)) LOG(UNEM/UNEM(-1)) LOG(ET_NSF_BS(-4)) LOG(MT_NSF_BS(-4)) R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Breusch-Godfrey Serial Correct
⁴)	GRAD _{i-lag}) + ln(S & E _{i-la}) d): 1981 2006 Prob. 0.3359 0.0422 0.0579	(<u>UNEM</u> , <u>UNEM</u> ,-1) + h(imple (adjuste & covariance t-Stat -0.985946 -2.170862	$(\frac{CAP_i}{CAP_{i-1}}) + \ln(GDP(-1))$ Saunts (dard errors & Std. Error 0.741357 0.036281	a(GDP _{i-1}) + ln C_GDP/TSC_ er adjustme nsistent stan Coefficient -0.730938 -0.07876	2.i(c) $\ln(\frac{GDP_i}{GDP_{i-1}}) = C + \ln C$ Dependent Variable: LOG(TSC Method: Least Squares Included observations: 26 aft White heteroskedasticity-cor Variable C

Dependent Variable: LOG(19	SC_GDP/TSC_	GDP(-1))			
Method: Least Squares		Sar	nple (adjuste	d): 1981 2006	
Included observations: 26 af	ter adjustme	nts			
White heteroskedasticity-co	insistent stan	dard errors 8	k covariance		
Variable	Coefficient	Std. Error	t-Stat	Prob.	
с	-0.788578	0.680546	-1.158743	0.2602	
LOG(TSC_GDP(-1))	-0.078817	0.036225	-2.175768	0.0417	
LOG(KT_CAPR/KT_CAPR(-1))	0.156789	0.077984	2.010527	0.0581	
LOG(UNEM/UNEM(-1))	-0.058452	0.031716	-1.84299	0.0802	
LOG(OTHBS(-4))	-0.060568	0.081783	-0.740599	0.4675	
LOG(MT_NSF_BS(-4))	0.312232	0.074339	4.20013	0.0004	
R-squared	0.723598	Mean depe	endent var	0.060463	
Adjusted R-squared	0.654498	S.D. depen	dent var	0.019866	
S.E. of regression	0.011677	Akaike info	criterion	-5.863235	
Sum squared resid	0.002727	Schwarz cri	iterion	-5.572905	
Log likelihood	82.22205	Hannan-Qu	uinn criter.	-5.77963	
F-statistic	10.4717	Durbin-Wa	tson stat	1.389026	
Prob(F-statistic)	0.000048				

F-statistic	0.307859	Prob. F(4,16)	0.8685
Obs*R-squared	1.858075	Prob. Chi-Square(4)	0.7618

 $ln(\frac{GDP}{GDP})$ $+\ln(\frac{UNEM}{2}) + \ln(OTHGR_{log}) + \ln(\&E_{t-log}) + \varepsilon_t$ INVŖ $=C+\ln(GDP_1)+\ln(GDP_2)$ UNEM INVR 2.iii Dependent Variable: LOG(TSC_GDP/TSC_GDP(-1)) Method: Least Squares Sample (adjusted): 1981 2006 Included observations: 26 after adjustments White heteroskedasticity-consistent standard errors & covariance

Variable Coefficient Std. Error t-Stat Prob. C -0.567232 0.306426 -1.85112 0.079 LOG(TSC_GDP(-1)) -0.059792 0.013508 -4.426421 0.0003 LOG(INVR/INVR(-1)) 0.203092 0.046933 4.327274 0.0003 LOG(UNEM/UNEM(-1)) -0.012858 0.026891 -0.478145 0.6377 LOG(OTHBS(-4)) -0.043571 0.040296 -1.081281 0.2924 LOG(MT_NSF_BS(-4)) 0.232364 0.040719 5.706489 0 **R-squared** 0.875817 Mean dependent var 0.060463 Adjusted R-squared 0.844771 0.019866 S.D. dependent var -6.663331 S.E. of regression 0.007827 Akaike info criterion 0.001225 Sum squared resid Schwarz criterion -6.373001 Log likelihood 92.6233 Hannan-Quinn criter. -6.579726 F-statistic 28.21044 Durbin-Watson stat 1.887127 Prob(F-statistic) 0

Breusch-Godfrey Serial Correlation LM Test:

F-statistic	0.108708	Prob. F(4,16)	0.9777
Obs*R-squared	0.687908	Prob. Chi-Square(4)	0.9528

ln (GDP) = GDP $(\underbrace{UNEM}_{r}) + \ln(OTHGB_{lag}) + \ln(S\&E_{r-lag}) + \tau + \varepsilon_r$ $=C+\ln(GDP_{-1})+\ln(\frac{CAP}{CAP_{-1}})$)+ln UNEM 2.ii(b) Dependent Variable: LOG(TSC_GDP/TSC_GDP(-1)) Method: Least Squares Sample (adjusted): 1981 2006 Included observations: 26 after adjustments White heteroskedasticity-consistent standard errors & covariance

Variable	Coefficient	Std. Error	t-Stat	Prob.	
с	-21.36233	6.860509	-3.113811	0.0057	
LOG(TSC_GDP(-1))	-0.268748	0.078062	-3.442775	0.0027	
LOG(KT_CAPR/KT_CAPR(-1))	0.120536	0.061189	1.969886	0.0636	
LOG(UNEM/UNEM(-1))	-0.077255	0.022946	-3.366801	0.0032	
LOG(ET_NSF_BS(-4))	-0.207248	0.077948	-2.658798	0.0155	
LOG(MT_NSF_BS(-4))	0.171443	0.059865	2.863824	0.0099	
TimeTrend	0.015023	0.004826	3.11257	0.0057	
R-squared	0.838628	Mean dep	endent var	0.060463	
Adjusted R-squared	0.787668	S.D. depen	ident var	0.019866	
S.E. of regression	0.009154	Akaike info	o criterion	-6.324453	
Sum squared resid	0.001592	Schwarz cr	iterion	-5.985735	
Log likelihood	89.21789	Hannan-Q	uinn criter.	-6.226915	
F-statistic	16.45671	Durbin-Wa	itson stat	1.588352	
Prob(F-statistic)	0.000001				

Breusch-Godfrey Serial Correlation LM Test:

F-statistic	0.123716	Prob. F(4,15)	0.9717
Obs*R-squared	0.830367	Prob. Chi-Square(4)	0.9343

 $\underbrace{UNEM_{i}}_{t}) + \ln(OTHGR_{t-lag}) + \ln(S \& E_{t-lag}) + \tau + \varepsilon_{i}$ $ln(\frac{GDP_{t}}{GDP_{t-1}})$ INVR $= C + \ln(GDP_{i-1}) + \ln(GDP_{i-1})$ $+\ln(\frac{UNEM_{i-1}}{UNEM_{i-1}})$ INVR 2.iii(b) Dependent Variable: LOG(TSC_GDP/TSC_GDP(-1))

Method: Least Squares Sample (adjusted): 1981 2006

Included observations: 26 after adjustments White heteroskedasticity-consistent standard errors & covariance

Variable	Coefficient	Std. Error	t-Stat	Prob.
с	-11.25955	5.269248	-2.136842	0.0458
LOG(TSC_GDP(-1))	-0.162315	0.05214	-3.113084	0.0057
LOG(INVR/INVR(-1))	0.158649	0.049981	3.17416	0.005
LOG(UNEM/UNEM(-1))	-0.037282	0.028532	-1.306675	0.2069
LOG(OTHBS(-4))	-0.118221	0.059129	-1.999378	0.0601
LOG(MT_NSF_BS(-4))	0.172571	0.046549	3.707268	0.0015
TimeTrend	0.007768	0.003774	2.058211	0.0536
R-squared	0.897905	Mean dep	endent var	0.060463
Adjusted R-squared	0.865665	S.D. deper	ident var	0.019866
S.E. of regression	0.007281	Akaike info	o criterion	-6.782266
Sum squared resid	0.001007	Schwarz cr	iterion	-6.443548
Log likelihood	95.16946	Hannan-Q	uinn criter.	-6.684728
F-statistic	27.85031	Durbin-Wa	atson stat	1.968378
Prob(F-statistic)	0			

Breusch-Godfrey Serial Correl	ation LM Tes	it:		
F-statistic	0.362717	Prob. F(4,15)	0.8313	
Obs*R-squared	2.293045	Prob. Chi-Square(4)	0.682	

Appendix C: Panel Data Results for Models 1 and 2 variants across range of Lags

$$\log(GDP_{i,t}) = C + \log(GDP_{i,t-1}) + \log(S \& E_{i,t-lag}) + a_i + \varepsilon_t$$

Model P1.i:

S&E Lag	GDP	Constant	GDP-1	S&E	Note
0	Value	5.614201***	0.491113***	-0.033151**	White heteroskedasticity-consistent standard errors & covariance
1	Value	3.145283	0.69028***	0.006724***	White heteroskedasticity-consistent standard errors & covariance
2	Value 0.963907		0.850512***	0.056529***	White heteroskedasticity-consistent standard errors & covariance
3	Value 0.852174		0.847743***	0.070089***	White heteroskedasticity-consistent standard errors & covariance
4	Value 1.169166		0.82871***	0.058659***	White heteroskedasticity-consistent standard errors & covariance
5	Value	1.611672	0.831961***	0.013671	White heteroskedasticity-consistent standard errors & covariance
6	Value	Value 2.636072** 0.737471*** 0.008		0.008525	White heteroskedasticity-consistent standard errors & covariance
7	Value	3.145283**	0.69028***	0.006724	White heteroskedasticity-consistent standard errors & covariance
8	Value	e 5.614201*** 0.491113***		-0.033151**	White heteroskedasticity-consistent standard errors & covariance

Model P1.ii:

 $\log(GDP_{i,t}) = C + \log(GDP_{i,t-1}) + \log(S \& E_{i,t-lag}) + a_i + \tau + \varepsilon_t$

S&E Lag	GDP	Constant	GDP-1	S&E	τ	Note
0	Value	- 19.07257***	0.801381***	0.009811	0.010492***	White heteroskedasticity-consistent standard errors & covariance
1	Value	-8.536902	0.799427***	0.039714***	0.005084	White heteroskedasticity-consistent standard errors & covariance
2	Value -6.808442		0.78377***	0.049815***	0.004249	White heteroskedasticity-consistent standard errors & covariance
3	Value -6.356896		0.786341***	0.064427***	0.003935	White heteroskedasticity-consistent standard errors & covariance
4	Value -5.569823		0.774806*** 0.053453*		0.00366	White heteroskedasticity-consistent standard errors & covariance
5	Value	-9.632344	0.744671***	0.007783	0.006079	White heteroskedasticity-consistent standard errors & covariance
6	Value	Value 10.51838 0.795983*** 0.012586		0.012586	-0.004247	White heteroskedasticity-consistent standard errors & covariance
7	Value	14.13611	14.13611 0.772513***		-0.005918	White heteroskedasticity-consistent standard errors & covariance
8	Value	50.35969 0.832587***		-0.020377	-0.024104	White heteroskedasticity-consistent standard errors & covariance

$$\log(GDP_{i,t}) = C + \log(GDP_{i,t-1}) + \log(S \& E_{i,t-lag}) + a_i + \varepsilon_t$$

Model P1C.ii:

S&E Lag	GDP	Constant	GDP-1	S&E	τ	Note
0	Value	-0.74827	0.910616***	0.015811	0.001479	White heteroskedasticity-consistent standard errors & covariance
1	Value	7.994583	0.91876***	0.028401***	-0.003059	White heteroskedasticity-consistent standard errors & covariance
2	Value	10.43292*	0.928785***	0.037136***	-0.004452	White heteroskedasticity-consistent standard errors & covariance
3	Value	11.03099	0.901579***	0.050961***	-0.004464	White heteroskedasticity-consistent standard errors & covariance
4	Value	/alue 14.27231 0.905145*** 0.038196*** -0		-0.006058	White heteroskedasticity-consistent standard errors & covariance	
5	Value	18.58184*	0.932488***	0.020752***	-0.008473*	White heteroskedasticity-consistent standard errors & covariance
6	Value	28.32962***	0.961928***	0.007919	-0.013649***	White heteroskedasticity-consistent standard errors & covariance
7	Value	Value 33.68453** 0.925696*** -0.005164 -0.0		-0.01577**	White heteroskedasticity-consistent standard errors & covariance	
8	Value	2 50.17787*** 0.947461***		-0.024831	-0.024168***	White heteroskedasticity-consistent standard errors & covariance

Model	P1.iii:			$\ln(\frac{G}{G})$	$\frac{DP_{i,t}}{DP_{i,t}} = \ln(GD)$	$P_{i,t-1}) + \ln(INVI)$	$R_{i,t}$) + ln(S & $E_{i,t-lag}$) + τ + a_i + ε_t
S&E Lag	GDP	Constant	GDP-1	S&E	τ	INVR	Note
0	Growth	-6.316883**	-0.344117***	0.035684***	0.003833***	0.206181***	White heteroskedasticity-consistent standard errors & covariance
1	Growth	-7.057466**	-0.369742***	0.033162**	0.004332***	0.209347***	White heteroskedasticity-consistent standard errors & covariance
2	Growth	-5.766001*	-0.369228***	0.029615*	0.003677**	0.215457***	White heteroskedasticity-consistent standard errors & covariance
3	Growth	-6.770137*	-0.388836***	0.033349*	0.004272**	0.212538***	White heteroskedasticity-consistent standard errors & covariance
4	Growth	-11.78556**	-0.42835***	0.010128	0.007051***	0.221523***	White heteroskedasticity-consistent standard errors & covariance
5	Growth	-7.29373	-0.391908***	-0.005747	0.004784	0.204057***	White heteroskedasticity-consistent standard errors & covariance
6	Growth	-6.893988	-0.455116***	0.037137**	0.004691	0.204298***	White heteroskedasticity-consistent standard errors & covariance
7	Growth	-3.191524	-0.518578***	0.051792***	0.003193	0.183242***	White heteroskedasticity-consistent standard errors & covariance
8	Growth	3.741245	-0.537174***	0.038293***	-0.0001	0.18466***	White heteroskedasticity-consistent standard errors & covariance

Model P1.iii:

Model P1.iv:
$$\ln(\frac{GDP_{i,t}}{GDP_{i,t}}) = \ln(GDP_{i,t-1}) + \ln(INVR_{i,t}) + \ln(S \& E_{i,t-lag}) + \log(pop_{i,t}) + \tau + a_i + \varepsilon_t$$

S&E Lag	GDP	Constant	GDP-1	S&E	τ	INVR	РОР
0	Growth	-6.733265***	-0.353267***	0.028802***	0.005862***	0.207494***	-0.210638***
1	Growth	-7.664918***	-0.381118***	0.027909**	0.006465***	0.211603***	-0.211842*
2	Growth	-6.460696**	-0.381375***	0.025634*	0.006156***	0.216833***	-0.247827*
3	Growth	-7.219262*	-0.401931***	0.03378**	0.006737***	0.212922***	-0.262267**
4	Growth	-11.96427***	-0.440342***	0.013778	0.009158***	0.220988***	-0.237497
5	Growth	-7.324363	-0.398139***	-0.002399	0.005675	0.203659***	-0.103407
6	Growth	-6.79684	-0.445755***	0.031616	0.003491	0.204731***	0.135768
7	Growth	-3.093001	-0.503473***	0.042438**	0.001288	0.183595***	0.219055
8	Growth	3.739592	-0.534811***	0.036707	-0.000474	0.184387***	0.044627

where *, **, and *** are significant at 10%, 5%, and 1%, respectively.

Model P2.i:			$\ln(\frac{GDP_t}{GDP_{t-1}}) = C$	$+\ln(GDP_{t-1})+1$	$\ln(\frac{CAP_t}{CAP_{t-1}}) + \ln(\frac{CAP_t}{CAP_{t-1}})$	$\frac{UNEM_t}{UNEM_{t-1}}) + \ln \frac{1}{2}$	$(OTHGR_{t-lag})$ -	$+\ln(S\&E_{t-lag})+\varepsilon_t$
S&E Lag	GDP	Constant	GDP-1	САР	UNEM	GRADS	S&E	Note
0	Growth	0.091651	-0.029159***	0.126691***	-0.081233	0.006471	0.017084	White heteroskedasticity- consistent
1	Growth	0.240475	-0.058172**	0.118215***	-0.089433***	0.016665	0.019997*	White heteroskedasticity- consistent
2	Growth	0.227721	-0.076099**	0.119909***	-0.088825***	0.031565**	0.022541**	White heteroskedasticity- consistent
3	Growth	0.377219	-0.124924***	0.092843***	-0.104465***	0.058379**	0.026849	White heteroskedasticity- consistent
4	Growth	0.403046	-0.141262***	0.112989***	-0.10129***	0.074654***	0.022831	White heteroskedasticity- consistent
5	Growth	0.832151**	-0.165802***	0.100099***	-0.101354***	0.073653***	0.006896	White heteroskedasticity- consistent
6	Growth	1.192836	-0.219691***	0.089515***	-0.106438***	0.032625*	0.072085***	White heteroskedasticity- consistent
7	Growth	2.351949**	-0.287435***	0.100557***	-0.088449***	0.031823	0.02782	White heteroskedasticity- consistent
8	Growth	3.910123***	-0.458562***	0.210435***	-0.018441***	0.095728***	-0.022784	White heteroskedasticity- consistent

$$\ln(\frac{GDP_{t}}{GDP_{t-1}}) = C + \ln(GDP_{t-1}) + \ln(\frac{INVR_{t}}{INVR_{t-1}}) + \ln(\frac{UNEM_{t}}{UNEM_{t-1}}) + \ln(OTHGR_{t-lag}) + \ln(S \& E_{t-lag}) + \tau + \varepsilon_{t}$$

Model P2.ii:

S&E Lag	GDP	Constant	GDP-1	INVR UNEM		OTH-GRAD	S&E	τ
0	Growth	-3.337962	-0.044158***	0.189415***	-0.049615***	0.006751	0.010696	0.001815
1	Growth	-3.933416	-0.069143***	0.185828***	-0.052519***	0.01359	0.01629*	0.002172
2	2 Growth -0.681186		-0.060876*	0.190176***	-0.047721***	0.027623	0.021214**	0.000404
3	Growth	-1.315992	-0.096871**	0.193495***	-0.045732***	0.057206***	0.021272	0.000736
4	Growth	-11.10694***	-0.155925***	0.208412***	-0.04299***	0.048489***	0.012703	0.006009***
5	Growth	-6.420344	-0.14678***	0.189964***	-0.051672***	0.057581***	0.01113	0.003586
6	Growth	-8.924082*	-0.210635***	0.19982***	-0.047572***	0.048479*	0.05697**	0.004982*
7	Growth	-7.967657	-0.248642***	0.206149***	-0.036339*	0.038161**	0.052758***	0.004783
8	Growth	1.985834	-0.205558***	0.252911***	-0.010779	0.099072***	0.000543	-0.000472

Model P2.ii(b):
$$\ln(\frac{GDP_t}{GDP_{t-1}}) = C + \ln(GDP_{t-1}) + \ln(\frac{CAP_t}{CAP_{t-1}}) + \ln(\frac{UNEM_t}{UNEM_{t-1}}) + \ln(OTHGR_{t-lag}) + \ln(S \& E_{t-lag}) + \tau + \varepsilon_t$$

S&E Lag	GDP	Constant	GDP-1	САР	UNEM	OTH-GRAD	S&E	τ
0	Growth	-7.639438**	-0.089888***	0.126935***	-0.084832***	-0.002756	0.016597	0.004217**
1	Growth	-9.094619**	-0.125466***	0.116644***	-0.094697***	0.003173	0.018311	0.005081**
2	Growth	-5.255047	-0.113855**	0.118629***	-0.091085***	0.02195	0.021928*	0.002983
3	Growth	-3.675112	-0.151813**	0.094219***	-0.104439***	0.051873**	0.025873	0.002198
4	Growth	-15.78786***	-0.245407***	0.128277***	-0.099952***	0.056524***	0.01708	0.00873***
5	Growth	-10.33011*	-0.238305***	0.111838***	-0.101116***	0.068197***	0.0036	0.005979**
6	Growth	-12.6673	-0.311577***	0.105676***	-0.106656***	0.032799*	0.068153***	0.007393*
7	Growth	-9.328459	-0.363017***	0.11768**	-0.088933***	0.034741*	0.03081	0.006174
8	Growth	-7.61015	-0.53227***	0.224545***	-0.022973	0.099472***	-0.013635	0.006049

Model P2.iii:		$\ln(\frac{GI}{GD})$	$\frac{\partial P_{i,t}}{\partial P_{i,t-1}} = C + \ln(C)$	$GDP_{i,t-1}) + \ln(\frac{I}{I})$	$\frac{NVR_{i,t}}{VVR_{i,t-1}}) + \ln(\frac{1}{2}$	$\frac{LABOR_{i,t}}{LABOR_{i,t-1}}) + \ln(\frac{OTHR_{i,t}}{OTHR_{i,t}}) + \ln(S \& E_{i,t-lag}) + \varepsilon_t$		
S&E Lag	GDP	Constant	GDP-1	INVR	LABOR	OTH-GR	S&E	Note
0	Growth	0.002395	-0.022558*	0.231699***	0.040939	0.008198	0.016706*	White heteroskedasticity- consistent
1	Growth	0.064999	-0.045935***	0.23116***	0.115189	0.015653	0.025561***	White heteroskedasticity- consistent
2	Growth	0.091445	-0.060769*	0.229498***	0.190807	0.023955	0.028489***	White heteroskedasticity- consistent
3	Growth	-0.042062	-0.080059**	0.239993***	0.15335	0.059757***	0.021016	White heteroskedasticity- consistent
4	Growth	-0.074637	-0.070145***	0.251558***	0.14592	0.064049***	0.009806	White heteroskedasticity- consistent
5	Growth	0.094691	-0.075144**	0.243995***	0.132052	0.056276***	0.007298	White heteroskedasticity- consistent
6	Growth	0.383818	-0.1452***	0.243542***	0.098262	0.058312**	0.04786	White heteroskedasticity- consistent
7	Growth	1.039376	-0.198488***	0.237862***	0.007199	0.043888*	0.054123***	White heteroskedasticity- consistent
8	Growth	1.45617	-0.258607***	0.228706***	1.0576**	0.103285***	0.007434	White heteroskedasticity- consistent

	P1.i $\log(GDP) = C + \log(GDP_{-1}) + \log(S \& E_{-1}) + \varepsilon$									
	Dependent Variable: I	OG(GDP1)								
	Method: Danel Least S	quares			Sample (adjusted): 1	2003 2009				
	Periods included: 7	quares			Cross-sections inclu	dod: 27				
	Tetal panel (uphalana)	ad) observativ	- nci 226		cross-sections more	ueu. 27				
	Total panel (unbalance	ed) observatio	JIIS: 220							
	white neteroskedasti	city-consisten	it standard e	errors &	covariance					
	Variable	Coefficient	Std. Error	t-Stat	Prob.					
	c	0.852174	0.818447	1.0412	0.2991					
		0.847743	0.092835	9 1317	0					
		0.070089	0.016609	/ 2199	0					
	200(3_20(-3))	0.070085	0.010003	4.2133	0	-				
	Effects Specification		Cross-sectio	on fixed	(dummy variables)					
	R-squared	0 991181	Mean der	andent	10 20395					
	Adjusted R-squared	0.991101	S D dono	ndentv	0 201201					
	Aujusteu K-squareu	0.363723	Akaika ini	fo critor	0.561261					
	S.E. OF regression	0.038042	Akaike in	io criter	-3.33302					
	Sum squared resid	0.25384	Schwarz c	riterion	-3.05509					
	Log likelihood	380.7346	Hannan-C	uinn cr	-3.34078					
	F-statistic	682.4018	Durbin-W	atson si	1.564229					
	Prob(F-statistic)	0								
	D1 .:.	$\ln(GDP_{i_{i_{i_{i_{i_{i_{i_{i_{i_{i_{i_{i_{i_$	$n(GDP_{i-1}) + \ln$	(INVR.)	$+\ln(S\&E_{i_{1}-i_{2}})+a_{i}+\varepsilon_{i}$					
	P1.II Dependent Variable: I	OG(GDP1)			ag					
	Method: Panel Least S				Sample (adjusted):	2003 2009				
	Periods included: 5	quares			Cross-sections inclu	ded: 26				
	Total panel (unbalance	ed) observatio	ons: 120							
	White heteroskedasti	city-consisten	it standard e	errors &	covariance					
	Variable	Coefficient	Std. Error	t-Stat	Prob.					
	с	1.953823	0.546504	3.5751	0.0006					
	LOG(GDP1(-1))	0.606032	0.053039	11.426	0					
	LOG(S_EO(-7))	0.031949	0.011757	2.7173	0.0079					
	LOG(INVR1)	0.202955	0.016951	11.973	0	_				
	Effects Specification		Cross-section fixed (dummy variables)							
	R-squared	0.997274	Mean der	endert	10.28338					
	Adjusted R-squared	0.996435	S.D. dene	ndent v	0.35566					
	S.E. of regression	0.021235	Akaike in	fo criter	-4.65959					
	Sum squared resid	0.041036	Schwarz o	riterion	-3.98594					
	Log likelihood	308.5753	Hannan-C	Quinn cr	-4.38602					
	F-statistic	1188.91	Durbin-W	atson s	1.932654					
	Prob(F-statistic)	0								
ىتشارات	ارتے للاس	_i	sl							

P1.i(b)	$\log(GDP_t)$	$= C + \log($	GDP_{t-1}	$(1) + \log(S)$	$\& E_{t-log}) + \tau + \varepsilon_t$					
Dependent Variable:	LOG(GDP1)									
Method: Panel Least S	quares		Sample	Sample (ad	ljusted): 1981 2006					
Periods included: 9 Cross-sections included: 27										
Fotal panel (unbalanced) observations: 226										
White heteroskedasticity-consistent standard errors & covariance										
Variable	Coefficient	Std. Error	t-Stat	Prob.						
с	-6.356896	9.604914	-0.662	0.5089						
LOG(GDP1(-1))	0.786341	0.085696	9.176	0						
LOG(S_EO(-3))	0.064427	0.019352	3.3292	0.001						
TimeTrend	0.003935	0.004976	0.7909	0.43						
Effects Specification		Cross-section	on fixed	(dummy va	ariables)					
R-squared	Coefficient Std. Error -6.356896 9.604914 0.786341 0.085696 0.064427 0.019352 0.003935 0.004976 n Cross-sect 0.991788 Mean de 0.990573 S.D. dep 0.037886 Akaike in 0.281325 Schwarz 435.152 Hannan- 816.2708 Durbin-V		pendent	10.18247						
Adjusted R-squared	0.990573	S.D. depe	ndent v	0.390204						
S.E. of regression	0.037886	Akaike in	fo criter	-3.58542						
Sum squared resid	0.281325	Schwarz o	riterion	-3.13136						
Log likelihood	435.152	Hannan-C	Quinn cr	-3.40218						
F-statistic	816.2708	Durbin-W	atson si	1.482514						
Prob(F-statistic)	0									

	P1.ii(b) In(GDP	$(i_{i_{i_{i_{i_{i_{i_{i_{i_{i_{i_{i_{i_{i$	$(i_{i,t-1}) + \ln(II)$	VVR _{i.t})	+ In(S & E	$(a_{i,t-lag}) + a_i + \tau + \varepsilon$	Ι,					
	Dependent Variable: I	LOG(GDP1)										
	Method: Panel Least S	quares			Sample (ad	justed): 2003 2009						
Periods included: 5 Cross-sections included: 2												
Total panel (unbalanced) observations: 120												
	White heteroskedasticity-consistent standard errors & covariance											
	Variable	Coefficient	Std. Error	t-Stat	Prob.							
	с	-21.93585	11.66814	-1.88	0.0633							
	LOG(GDP1(-1))	0.422875	0.055695	7.5927	0							
	LOG(S_EO(-7))	0.024257	0.01523	1.5928	0.1147							
	LOG(INVR1)	0.214853	0.020096	10.691	0							
	TimeTrend	0.012825	0.006045	2.1218	0.0366							
	Effects Specification		Cross-sectio	on fixed	(dummy va	riables)						
	R-squared	0.997485	Mean dep	endent	10.28338							
	Adjusted R-squared	0.996674	S.D. depe	ndent v	0.35566							
	S.E. of regression	0.020511	Akaike in	fo criter	-4.72344							
	Sum squared resid	0.037861	Schwarz c	riterion	-4.02656							

58

Log likelihood

Prob(F-statistic)

F-statistic

313.4062 Hannan-Quinn cr -4.44043

1230.75 Durbin-Watson st 1.77939

0

1 P1.iii Dependent Variable:	$\ln(\frac{GDP_{i_t}}{GDP_{i_t}}) = \ln(GDP_{i_{t-1}})$ $\log(GDP1)$	$)+\ln(INVR_{t})+1$	$\mathbf{n}(S \& E_{i_{t-i_{\mathbf{g}}}}) + \tau + a_i + \varepsilon_t$	P1.iv $ln(\frac{GDP_{i,}}{GDP_{i,}})$	$\frac{t}{d} = \ln(GDP_{i,t-1})$	$(1) + \ln(INVR)$	$_{i,t}) + \ln(a)$	$S \& E_{i,t-lag}) + \log(pop)$	$(p_{i,t}) + \tau + a_i +$
Method: Panel Least	Squares	s	ample (adjusted): 2005 2009	Method: Panel Least	Squares			Sample (adjusted): 2	005 2009
Periods included: 5		c	ross-sections included: 23	Periods included: 5	squares			Cross-sections includ	led: 26
Total panel (unbaland	ed) observations: 8	7		Total panel (unbaland	ed) observatio	ons: 120			
White heteroskedast	icity-consistent stan	dard errors & c	ovariance	White heteroskedast	icity-consisten	t standard e	rrors &	covariance	
	,								
Variable	Coefficient Std.	Error <mark>t</mark> -Stat	Prob.	Variable	Coefficient	Std. Error	t-Stat	Prob.	
с	-3.191524 14	1.3006 -0.223	0.8242	с	-5.041678	0.793267	-6.356	0	
LOG(GDP1(-1))	-0.518578 0.0	51959 -9.981	0	LOG(GDP1(-1))	-0.429596	0.046348	-9.269	0	
LOG(S_EU(-7))	0.051792 0.0	18135 2.856	0.0059	LOG(S_EO(-7))	0.021943	0.012078	1.8167	0.0726	
LOG(INVR1)	0.183242 0.0	29858 6.1372	0	LOG(INVR1)	0.210665	0.017174	12.267	0	
TimeTrend	0.003193 0.0	07316 0.4364	0.6641	LOG(POP)	0.443657	0.044538	9.9614	0	
Effects Specification	Cross	-section fixed (dummy variables)	Effects Specification		Cross-sectio	n fixed	(dummy variables)	
R-squared	0.895327 Me	an dependent	0.036684	R-squared	0.839173	Mean dep	endent	0.04345	
Adjusted R-squared	0.849968 S.D.	. dependent v	0.052878	Adjusted R-squared	0.787351	S.D. deper	ndent v	0.045341	
S.E. of regression	0.020482 Aka	ike info criter	-4.68945	S.E. of regression	0.020908	Akaike inf	o criter	-4.68503	
Sum squared resid	0.02517 Sch	warz criterion	-3.92417	Sum squared resid	0.039344	Schwarz cr	riterion	-3.98815	
Log likelihood	230.991 Han	nnan-Quinn cr	-4.38129	Log likelihood	311.1015	Hannan-Q	uinn cr	-4.40202	
F-statistic	19.73891 Dur	bin-Watson st	1.8922	F-statistic	16.19339	Durbin-Wa	atson si	1.941622	
Prob(F-statistic)	0			Prob(F-statistic)	0				

In GDP	$-C+\ln(GDP)+\ln(CAP)$	UNEM	IGP)+1nS&F)+a+s	P2.i(b) $\ln(\frac{GDP_{i,i}}{GDP_{i,i-1}}) = C+1$	$n(GDP_{u-1}) + ln(\frac{C}{C})$	$\frac{CAP_{i,i}}{CAP_{i,i-1}}$ + ln($\frac{UN}{UNP}$	$\frac{EM_{i}}{EM_{i-1}}$)+ln(OTHGR _{in-1})	$_{ag})+\ln(S\&E_{i,i-lag})+a_i+\tau+$	ε
P2.i GDP	$CAP_{i,i-1}$	UNEM_1	C (Lag) + Into C (Lag) + C + C	Dependent Variable: LOG(G	DP1/GDP1(-1))			
Dependent Variable: LOG(GDP1/GDP1(-1))			Method: Panel Least Square	s		Sample (adjusted)	: 2004 2009	
Method: Panel Least Square	es	Sample (adjusted	l): 2004 2009	Periods included: 6			Cross-sections inc	luded: 23	
Periods included: 6		Cross-sections in	cluded: 23	Total panel (unbalanced) ob	servations: 1	05			
Total panel (unbalanced) o	bservations: 105			White heteroskedasticity-co	onsistent stan	dard errors 8	& covariance		
White heteroskedasticity-c	onsistent standard errors &	covariance							
Variable	Coef Std Frror	t-Stat	Prob	Variable	Coef.	Std. Error	t-Stat	Prob.	
Variable	COCI. Sta. Enor	t otat	1105.	c	-12.6673	8.090657	-1.56567	0.1216	
с	1.192836 0.769941	1.549257	0.1254	LOG(GDP1(-1))	-0.311577	0.074113	-4.204064	0.0001	
LOG(GDP1(-1))	-0.219691 0.067018	-3.278094	0.0016	LOG(CAP/CAP(-1))	0.105676	0.020973	5.038693	0	
LOG(CAP/CAP(-1))	0.089515 0.020955	4.27183	0.0001	LOG(UNEM/UNEM(-1))	-0.106656	0.012424	-8.584904	0	
LOG(UNEM/UNEM(-1))	-0.106438 0.01259	-8.453896	0	LOG(OTHU(-6))	0.032799	0.01852	1.771056	0.0806	
LOG(OTHU(-6))	0.032625 0.016876	1.933251	0.0569	LOG(S EU(-6))	0.068153	0.024114	2.826326	0.006	
LOG(S_EU(-6))	0.072085 0.024001	3.003418	0.0036	TimeTrend	0.007393	0.004192	1.763641	0.0818	
Effects Specification	Cross-sectio	n fixed (dummy v	variables)	Effects Specification		Cross-sectio	n fixed (dummy v	ariables)	-
						01033 30000	in the data in the		-
R-squared	0.805894 Mean dep	endent var	0.042513	P. couprod	0 910649	Moon don	ondontvar	0.042512	
Adjusted R-squared	0.73783 S.D. deper	dent var	0.047719	Adjusted R-squared	0.010048	S D deper	dent var	0.042719	
S.E. of regression	0.024433 Akaike info	criterion	-4.362569	S E of regression	0.740887	Akaiko infr	o criterion	-1 26822	
Sum squared resid	0.045968 Schwarz cr	terion	-3.654846	Sum squared resid	0.02423	Schwarz er	iterion	-2 625221	
Log likelihood	257.0349 Hannan-Q	uinn criter.	-4.075785	Log likelihood	258,3368	Hannan-O	uinn criter.	-4.071294	
F-statistic	11.84037 Durbin-Wa	tson stat	2.108655	Estatistic	11.62032	Durbin-Wa	atson stat	2.045625	
Prob(F-statistic)	0			Prob(E-statistic)	0	Darbin We	noon stat	2.045025	
	D INT/D	10/21/				131170	ID IFL		
	$C = C + \ln(GD_{l_{1}-1}^{p}) + \ln(\frac{HVV}{I\lambda \pi VP}) + 1$	$\frac{UNEM}{UNEM}$ + ln(OTHG	$(R_{i,i=lag}) + ln(S\&E_{i,i=lag}) + a_i + \varepsilon_i$	P2 ii(b) $\ln \frac{GD\xi}{GDP}$	$-)=C+\ln(GDE)$	P_{-1})+ln $\frac{INVR}{INVR}$	$-)+\ln(\frac{UNEM}{UNEM})+\ln(\frac{UNEM}{UNEM})$	$OTHGR_{lag}$)+1n $S\&E_{l,i}$	$-lag$)+ q + τ + ε_{i}
P2.II 024		CTV2042		Dependent Variable: LOG		1(-1))	1 0112010-1		
Mathed: Depart Card		Companya (a disso		Method: Panel Least Squ	aros	-(-//	Sample (ad	iusted): 2004 2009	
Method: Panel Least Squa	ares	Sample (adjus	sted): 2004 2009	Deriods included 6			Sample (au	justeuj. 2004 2003	
Periods included: 6		Cross-section:	s included: 23	Tetal associations of		110	Cross-section	ons included: 25	
Total panel (unbalanced)	observations: 110			Total panel (unbalanced)	observation	15: 110			
White heteroskedasticity	-consistent standard erro	s & covariance		white neteroskedasticity	-consistent	standard er	rors & covarianc	e	
Variable	Coef. Std. Erro	r t-Stat	Prob.	Variable	Co	oef. Std. Er	ror t-Stat	Prob.	
c	0.39329 0.411775	0.955109	0.3423	с	-8.924	082 5.0744	403 -1.75864	7 0.0824	
	-0 152075 0 042540	-3 57/152	0.0006	LOG(GDP1(-1))	-0.210	635 0.0417	782 -5.0413	3 0	
	0.107145 0.00503	-3.374132	0.0000	LOG(INVR1/INVR1(-1))	0.19	982 0.023	3662 8.44483	2 0	
	0.19/145 0.0250	3 7.862/95	U	LOG(UNEM/UNEM(-1))	-0.047	572 0.01	1531 -3.10729	1 0.0026	
LOG(UNEM/UNEM(-1))	-0.045464 0.01553	7 -2.926219	0.0044		0.048	179 0.029	9144 1 66344	2 0 1001	
LOG(OTHU(-6))	0.051688 0.02749	4 1.879995	0.0637		0.040	607 0.02	100344	1 0.0569	
LOG(S_EU(-6))	0.061689 0.02998	2.05723	0.0428	TimeTrend	0.004	982 0.002	2648 1.88128	1 0.0635	
Effects Specification	Cross-sec	ion fixed (dumr	ny variables)						
				Effects Specification		Cross-s	ection fixed (du	mmy variables)	
R-squared	0.885556 Mean d	ependent var	0.039783	P. couprod	0.997	026 Moon	donondontvor	0.020792	
Adjusted R-squared	0.847873 S.D. deg	endent var	0.049902	R-Squareu	0.687	105 CD -	langendent var	0.059783	
S.E. of regression	0.019464 Akaike i	nfo criterion	-4.825214	Adjusted R-squared	0.849	185 S.D. 0	ependent var	0.049902	
Sum squared resid	0.031064 Schwarz	criterion	-4.137819	S.E. of regression	0.019	3/9 Akaik	e into criterion	-4.827965	
Log likelihood	202 2260 Happan	Quinn critor	-4 546402	Sum squared resid	0.030	421 Schw	arz criterion	-4.116021	
E statistic	275,5008 Harinan	Nation stat	-4.040403	Log likelihood	294.5	381 Hann	an-Quinn criter.	-4.539197	
F-SLATISTIC	23.5002 Durbin-	walson stat	1.895403	F-statistic	22.91	926 Durbi	n-Watson stat	1.83845	
Prob(F-statistic)	0			Prob(F-statistic)		0			
لالاس (1)					ww	/w.mai	naraa.co	m	
-									

www.manaraa.com

P2.iii $\ln \frac{GDP_{ex}}{GDP_{ex-}} = 0$ Dependent Variable: LOG(0	C+1nGD,P,_1)+1n GDP1/GDP1(-1)	$\frac{INVR}{INVR}$ $+1n\frac{L}{L}$	ABQR OTH ABOR)+In OTH	$\frac{1}{10}$)+1n(\$& $E_{i,s-i\alpha}$)+ $a+\epsilon$	P2.iii(b) P2.endent Variable: LOG(0	-)=C+ln(GDP,)+	$\ln(\frac{INVR_{J}}{INVR_{J-1}}) + \ln(\frac{I}{I})$	LABOR ABOR)+ln(OTH	$\frac{\frac{R}{R_{i}}}{R_{i}})+\ln (S\&E_{i,i,-i,s})+a_{i}+\varepsilon+\varepsilon_{i}$	
Method: Panel Least Squar	es	S	ample (adjuste	ed): 2004 2009	Method: Panel Least Square	es	// S	ample (adjust	ed): 2004 2009	
Periods included: 5		- (cross-sections i	ncluded: 23	Periods included: 5		C	Cross-sections i	included: 23	
Total panel (unbalanced) o	bservations: 8	/			Total panel (unbalanced) observations: 87					
White heteroskedasticity-c	consistent stan	dard errors &	covariance		 White heteroskedasticity-consistent standard errors & covariance 					
Variable	Coef.	Std. Error	t-Stat	Prob.	Variable	Coef.	Std. Error	t-Stat	Prob.	
с	1.039376	0.587105	1.770342	0.0818	с	-5.485563	10.30098	-0.532528	0.5964	
LOG(GDP1(-1))	-0.198488	0.067375	-2.946015	0.0046	LOG(GDP1(-1))	-0.237436	0.03232	-7.346318	0	
LOG(INVR1/INVR1(-1))	0.237862	0.02403	9.898422	0	LOG(INVR1/INVR1(-1))	0.241643	0.028532	8.469057	0	
LOG(LABOR/LABOR(-1))	0.007199	0.169839	0.042387	0.9663	LOG(LABOR/LABOR(-1))	0.047536	0.185491	0.256271	0.7986	
LOG(OTHU(-7))	0.043888	0.024077	1.822826	0.0734	LOG(OTHU(-7))	0.042484	0.023612	1.79928	0.0772	
LOG(S_EU(-7))	0.054123	0.019607	2.76045	0.0077	LOG(S_EU(-7))	0.052828	0.020355	2.595325	0.012	
					TimeTrend	0.003463	0.005171	0.669718	0.5057	
Effects Specification		Cross-sectior	n fixed (dummy	variables)	Effects Specification		Cross-sectior	n fixed (dummy	y variables)	
R-squared	0.91427	Mean depe	endent var	0.036684	P. squared	0 01/012	Moon dong	and ont yor	0.026594	
Adjusted R-squared	0.875038	S.D. depen	dent var	0.052878	Adjusted R-squared	0.514512	S D depen	dont var	0.050004	
S.E. of regression	0.018692	Akaike info	criterion	-4.866102	S E of regression	0.073034	Akaike info	criterion	-4 850624	
Sum squared resid	0.020615	Schwarz cri	terion	-4.072477	Sum squared resid	0.02046	Schwarz cri	terion	-4.028655	
Log likelihood	239.6754	Hannan-Qu	inn criter.	-4.546534	Log likelihood	240.0021	Hannan-Ou	inn criter.	-4.519642	
F-statistic	23.304	Durbin-Wa	tson stat	2.245071	F-statistic	22.27299	Durbin-Wa	tson stat	2.197718	
Prob(F-statistic)	0				Prob(F-statistic)	0				

Model Results With Data Set 2 - All Countries

P1.i $\ln(GDP_t)$	$= C + \ln(GD)$	$P_{t-1}) + \ln(S_{t-1})$	$E \& E_{t-ia}$	$(a_i + a_i) + a_i + a_i$	ε	P1 i(b)
Dependent Variable:	LOG(GDP1)					Dependent Ve
Method: Panel Least S	Squares			Sample (ad	djusted): 2001 2010	Method: Pane
Periods included: 10				Cross-sect	ions included: 101	Periods includ
Total panel (unbalanc	ed) observatio	ons: 534				Total panel (u
White heteroskedasti	city-consisten	t standard e	rrors & o	ovariance		White heteros
Variable	Coefficient	Std. Error	t-Stat	Prob.		- Variable
с	1.056648	0.142063	7.4379	0		C
LOG(GDP1(-1))	0.852514	0.022117	38.545	0		LOG(GDP1(-3))
LOG(SNE(-3))	0.041925	0.015865	2.6426	0.0085		LOG(SNE(-3))
						TimeTrend
Effects Specification		Cross-sectio	n fixed (dummy va	riables)	
						Effects Specifi
R-squared	0.998742	Mean dep	endent	9.415962		
Adjusted R-squared	0.998445	S.D. deper	ndent va	1.172319		R-squared
S.E. of regression	0.046232	Akaike inf	o criteri	-3.13879		Adjusted R-sq
Sum squared resid	0.921235	Schwarz ci	riterion	-2.31317		S.E. of regress
Log likelihood	941.0573	Hannan-Q	uinn cri	-2.81574		Sum squared r
F-statistic	3355.667	Durbin-W	atson st	1.600442		F-statistic
Prob(F-statistic)	0					_ Prob(F-statisti

P1.i(b) In	$(GDP_t) = C$	+ ln(GDP ,-1) + ln(S	$S \& E_{t-lag}$	$) + a_i + \tau + \varepsilon_i$
Dependent Variable:	LOG(GDP1)				
Method: Panel Least	Squares		Sample	Sample (a	djusted): 1981 2006
Periods included: 10	-			Cross-sect	ions included: 101
Total panel (unbaland	ed) observatio	ons: 534			
White heteroskedast	icity-consisten	t standard e	rrors & c	ovariance	
Variable	Coefficient	Std. Error	t-Stat	Prob.	
С	-48.55844	7.517565	-6.459	0	
LOG(GDP1(-3))	0.389175	0.061389	6.3395	0	
LOG(SNE(-3))	0.070182	0.018629	3.7674	0.0002	
TimeTrend	0.026794	0.004	6.698	0	
Effects Specification		Cross-sectio	n fixed ((dummy va	ariables)
D. couprod	0.007345	Mean den	ondont	0 415062	
Adjusted Discussed	0.997345	o D dono	endent	9.413902	
Adjusted R-squared	0.990709	S.D. deper	ident va	1.1/2319	
S.E. of regression	0.067252	Akaike Inf	o criteri	-2.38/85	
Sum squared resid	1.944793	Schwarz cr	iterion	-1.55422	
Log likelihood	741.556	Hannan-Q	uinn cri	-2.06166	
F-statistic	1568.274	Durbin-Wa	atson st	0.768203	
Prob(F-statistic)	0				

$\ln(\frac{GDP_{i,t}}{GDP_{i,t}}) = C + \ln(GDP_{i,t-1}) + \ln(S \& E_{i,t-\log}) + a_i + \tau + \varepsilon_t$									
Dependent Variable: I	LOG(GDP1)								
Method: Panel Least S	Sample (adjusted): 2003 2009								
Periods included: 5				Cross-secti	ons included: 101				
Total panel (unbalanc	ed) observatio	ons: 534							
White heteroskedasti	city-consisten	t standard e	rrors &	covariance					
Variable	Coefficient	Std. Error	t-Stat	Prob.					
с	-11.19963	4.565753	-2.453	0.0146					
LOG(GDP1(-1))	-0.228945	0.045503	-5.031	0					
LOG(SNE(-3))	0.035774	0.014418	2.4812	0.0135					
TimeTrend	0.006517	0.002449	2.6612	0.0081					

Effects Specification	Cross-section fixed (dummy variables)						
R-squared	0.506194	Mean dependent	0.049202				
Adjusted R-squared	0.387911	S.D. dependent va	0.058447				
S.E. of regression	0.045727	Akaike info criteri	-3.15936				
Sum squared resid	0.899108	Schwarz criterion	-2.32572				

0

947.5485 Hannan-Quinn cri -2.83317

4.279492 Durbin-Watson st 1.510775

 $\ln(\textit{GDP}_{i,t}) = \ln(\textit{GDP}_{i,t-1}) + \ln(\textit{CAP}_{i,t}) + \ln(\textit{S \& E}_{i,t-iag}) + a_i + \varepsilon_t$ Dependent Variable: LOG(GDP1)

P1.iii

Method: Panel Least S Periods included: 9	quares			Sample (ac Cross-secti	djusted): 20 ions include	01 2009 ed: 93
Fotal panel (unbalanc	ed) observatio	ons: 459				
White heteroskedasti	city-consisten	t standard e	rrors & d	ovariance		
Variable	Coefficient	Std. Error	t-Stat	Prob.		
C	-18.78681	4.256805	-4.413	0		
LOG(GDP1(-1))	-0.419364	0.043357	-9.672	0		
LOG(SNE(-3))	0.026102	0.012899	2.0235	0.0438		
LOG(CAP1)	0.157569	0.014921	10.56	0		
TimeTrend	0.010616	0.002287	4.6411	0		
Effects Specification		Cross-sectio	n fixed	(dummy va	riables)	
R-squared	0.999385	Mean dep	endent	9.431415		
Adjusted R-squared	0.999222	S.D. deper	ndent va	1.176742		
S.E. of regression	0.032823	Akaike inf	o criteri	-3.81014		
Sum squared resid	0.389995	Schwarz cr	iterion	-2.93755		
log likelihood	971.4265	Hannan-Q	uinn cri [.]	-3.4665		
F-statistic	6128.291	Durbin-Wa	atson st	1.418664		
Prob(F-statistic)	0					

www.manaraa.com

Log likelihood

Prob(F-statistic)

F-statistic

ln(P1.iii Dependent Variable:	$\frac{GDP_{t_{ij}}}{GDP_{ij}} = \ln (GDP_{t_{ij-1}}) + \log(GDP1/GDP1(-1))$	$+\ln(CAP_{t_q})+\ln(S)$	$\& E_{i_i - iag}) + \tau + a_i + \varepsilon_i$	P2.i	$\ln(\frac{GDP}{GDP}) = 0$	C+1n(GD문-1)+1n(GDP1/-1)	$\frac{CAP}{CAP} + \ln(\frac{UI}{UN})$	$\frac{VEM}{VEM_{-1}}) + \ln(S \& E_{i})$	$(r-lag) + ln (\frac{POP_{i,i}}{POP_{i,i}}) + a_i + \tau$	$t + \varepsilon_i$
Method: Panel Least S	Squares		Sample (adjusted): 2001 2009	Meth	od: Panel Least Squar	901 1/ 001 1(-1) 195	/ 	ample (adjuste	ed): 2005 2009	
Periods included: 9			Cross-sections included: 93	Perio	ds included: 5		(ross-sections i	ncluded: 51	
Total panel (unbalanc	ed) observations: 4	59		Total	panel (unbalanced) o	bservations: 10	54			
White heteroskedasti	, icity-consistent stan	dard errors & o	ovariance	Whit	e heteroskedasticity-	consistent stan	dard errors &	covariance		
	/									
Variable	Coefficient Std.	Error t-Stat	Prob.	Varia	ble	Coef.	Std. Error	t-Stat	Prob.	
				с		-12.19532	11.26792	-1.082304	0.2816	
с	-18,78681 4,2	256805 -4.413	0	LOG(GDP1(-1))	-0.276538	0.071978	-3.841963	0.0002	
- LOG(GDP1(-1))	-0.419364 0.0	43357 -9.672	0	LOG(CAP1/CAP1(-1))	0.117029	0.037797	3.096232	0.0025	
LOG(SNE(-2))	0.026102 0.0	12899 2 0225	0.0438	LOG(UNEM/UNEM(-1))	-0.099162	0.013991	-7.087755	0	
	0.020102 0.0	14021 10 56	0.0458	LOG(SNE(-7))	0.034188	0.013704	2.494706	0.0141	
LUG(CAPI)	0.137309 0.0	014921 10.56	0	LOG(POP/POP(-1))	-1.250729	0.658692	-1.898806	0.0603	
TimeTrend	0.010616 0.0	002287 4.6411	0	Time	Trend	0.007321	0.005815	1.258795	0.2108	
Effects Specification	Cross	-section fixed (dummy variables)	Effec	ts Specification		Cross-sectior	n fixed (dummy	variables)	
R-squared	0.707434 Me	an dependent	0.053691							
Adjusted R-squared	0.629847 S.D.	. dependent va	0.053949	R-sq	uared	0.855278	Mean depe	ndent var	0.047666	
S.E. of regression	0.032823 Aka	aike info criteri	-3.81014	Adju	sted R-squared	0.779536	S.D. depen	dent var	0.057251	
Sum squared resid	0.389995 Sch	warz criterion	-2 93755	S.E. c	of regression	0.026881	Akaike info	criterion	-4.126696	
Log likelihood	0.303333 301		2.55755	Sum	squared resid	0.077318	Schwarz cri	terion	-3.049304	
Log likelihood	971.4205 Han	man-Quinn cri	-3.4000	Log	kelihood	395.3891	Hannan-Qu	iinn criter.	-3.689316	
F-STATISTIC	9.11/995 Dur	bin-watson st	1.418664	F-sta	tistic	11.29197	Durbin-Wa	tson stat	2.551071	
Prob(F-statistic)	0			Prob	(F-statistic)	0				

المنسارات

Curriculum Vitae

Nathaniel Robinson, P.E. has worked for 10 years in engineering and project management. He began his engineering profession as a design engineer at Motorola working on RF and microcontroller design before spending six years working on Department of Defense projects in electromagnetic design and application. Prior to joining UTEP's Center for Space Exploration and Technology Research (*c*SETR), he worked on the testing of space shuttle thrusters and various propulsion tests at NASA White Sands Test Facility. At *c*SETR, he serves as Associate Director managing research in energy, propulsion and aerostructures. He is also the Director of the NASA Science, Engineering, Math and Aerospace Academy for the Southwest at UTEP. Previously an international volunteer in humanitarian aid, he has also spoken and published in various technical, education and social activist conferences.

